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ABSTRACT This is an overview of a relatively recent application of long-range
dependence (LRD) to the area of communication networks, in particular to prob-
lems concerned with the dynamic nature of packet flows in high-speed data net-
works such as the Internet. We demonstrate that this new application area of-
fers unique opportunities for significantly advancing our understanding of LRD
and related phenomena. These advances are made possible by moving beyond
the conventional approaches associated with the wide-spread “black-box” per-
spective of traditional time series analysis and exploiting instead the physical
mechanisms that exist in the networking context and that are intimately tied
to the observed characteristics of measured network traffic. In order to describe
this complexity we provide a basic understanding of the design, architecture and
operations of data networks, including a description of the TCP/IP protocols
used in today’s Internet. LRD is observed in the large scale behavior of the data
traffic and we provide a physical explanation for its presence. LRD tends to
be caused by user and application characteristics and has little to do with the
network itself. The network affects mostly small time scales, and this is why a
rudimentary understanding of the main protocols is important. We illustrate why
multifractals may be relevant for describing some aspects of the highly irregular
traffic behavior over small time scales. We distinguish between a time-domain
and wavelet-domain approach to analyzing the small time scale dynamics and
discuss why the wavelet-domain approach appears to be better suited than the
time-domain approach for identifying features in measured traffic (e.g., relatively
regular traffic patterns over certain time scales) that have a direct networking
interpretation (e.g., “round trip” time behavior).

AMS Subject classification: Primary 94-02; secondary 60G18.
Keywords and phrases: self-similarty, multifractals, computer networks
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1 Introduction

While the popular “black-box” approaches to time series have their merits,
especially in areas of applications where the available measurements are
limited in scope, we argue here that for highly engineered complex systems
such as the Internet, they are of little value. Ignoring the rich semantic con-
text present in traffic measurements means missing out on new discoveries.

As is cogently discussed in [34], it seems to be the rule rather than
the exception that many naturally occurring empirical records or time
series violate the assumption of independence or correlations that decay
exponentially-fast. Instead, the data often suggest the presence of strong
temporal correlations over large lags, manifesting themselves in a phe-
nomenon called persistence that captures the intuition behind the empirical
observation that measurements of many physical or engineered systems nat-
urally tend to “cluster.” That is, they show fluctuations above or below a
given level over extended periods of times that are much more common than
in the case of independent or Markovian-type observations. Mathematically,
persistence or slowly decaying correlations can be parsimoniously described
via the notion of long-range dependence (LRD), which was brought to the
attention of statisticians and probabilists by Mandelbrot and his co-workers
[61, 53, 54], mainly through applications in such areas as hydrology (e.g.,
annual river flow data) [56, 55, 57|, geophysics [58, 59|, and finance (e.g.,
stock prices) [49].

As far as the networking application area is concerned, the last decade
has seen an enormous increase in empirical studies of high-quality and high-
volume data sets of traffic measurements from a variety of different data net-
works, but especially from different links within the global Internet. These
studies describe pertinent statistical characteristics of the temporal dynam-
ics of the “packet” or bit rate processes (i.e., the time series representing
the number of packets or bits per time unit, over a certain time interval)
as seen on a link within the network. They provide ample evidence that
measured packet traffic exhibits LRD, and hence when viewed within the
right range of scales, the traffic appears to be fractal-like or self-similar, in
the sense that a segment of the traffic measured at some time scale looks
or behaves just like an appropriately scaled version of the traffic measured
over a different time scale. In effect, this empirically-based effort toward
describing actual data network traffic has demonstrated that self-similarity
provides an elegant and compact mathematical framework for capturing
the essence behind the observed “burstiness” or scale-invariance in mea-
sured traffic traces.

This behavior is in sharp contrast to what one observes in the usual mod-
els for data traffic, models that in general lack validation against measured
data traffic time series or traces. The conventional models are based on pre-
sumed conditions of the dynamics of actual data network traffic, and are
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typically assumed to be relevant for data traffic because of their apparent
similarities or close associations with a long line of highly successful models
of voice traffic (e.g., see [79] and references therein). A hallmark of these
traditional voice-based data traffic models is an exponentially fast decay-
ing correlation function, implying that time-aggregation quickly results in
white noise traffic characterized by the absence of any significant temporal
correlations, and capable only of reproducing the observed bursty behavior
of measured traffic over a narrow range of time scales.

During the last few years, the discovery of ubiquitous LRD in measured
traffic from data networks has led to two very different and essentially dis-
joint research efforts. The first, purely descriptive in nature, has followed
the line of traditional time series analysis, where the context in which the
data are measured and collected is of little or no significance. The main
emphasis is on statistical inference (e.g., model fitting and parameter esti-
mation), and the end product is generally a model that describes the given
data well. This approach ignores fundamental issues concerning the role of
traditional model fitting when there are large numbers of voluminous data
sets and when the actual data networks are known to undergo constant and
often significant changes. The approach also revisits arguments concerning
the validity of inferring asymptotic statistical properties such as LRD from
a finite set of data, first put forward more than 20 years ago when LRD
was a hotly debated issue in areas of applications such as hydrology and
finance (see for example [43], and the discussions in [53]).

In contrast to this wide-spread descriptive approach to dealing with LRD
traffic traces, the networking application has motivated a very different re-
search effort; an effort that essentially abandons traditional time series anal-
ysis thinking all together, insists on fully exploiting the context in which
the data are collected, and focuses on providing physical explanations for
the observed LRD phenomenon that directly relate to underlying network-
ing mechanisms (and can be validated against measured data). The results
are constructive models of data network traffic that are mathematically
solid, empirically consistent with the data, and can be easily explained to
networking experts because the constructions capture the essence of how
traffic is generated in the networking context in the first place. Clearly, this
effort requires at times intimate familiarity with networking-specific details.
However, learning about the application area so as to be able to converse
with the experts can yield unexpected findings that compel revisiting with
conventional wisdom. In the case at hand, we show how this application-
centered approach has lead to new scientific discoveries related to the ori-
gins of LRD in measured aggregate traffic; we discuss how understanding
the physics behind the LRD phenomenon in the networking context (i.e.,
user/application characteristics) points up the additional need to under-
stand hitherto unexplored structural properties of measured data network
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traffic over small time scales; we explain why the mathematical framework
of multifractals may be relevant for capturing and describing this newly
observed, highly irregular fine-scale traffic behavior; and we put forward
arguments for why there is hope for finding a physical explanation of this
phenomenon that is as intuitive, rigorous, and appealing as the one that is
now available for the LRD phenomenon.

In the spirit of convincing the interested reader of the value of the “getting
to know your network” approach over the “black-box” approach, we follow
closely the presentations in [66, 88]. Each section of this article starts by
providing successively more detailed information about the networking ap-
plication, starting from a discussion of the basic concepts of data networks
(as compared to the traditional voice networks) in Section 2.1, to a brief
sketch in Section 3.1 of the basic design principles behind many of today’s
data networks, including the notion of the TCP/IP protocol architecture.
This is followed up in Section 4.1 with a primer on TCP, the predominant
transfer protocol in today’s Internet. The corresponding Sections 2.2, 3.2
and 4.2 illustrate how knowing about these different aspects of data net-
works helps in formulating new and relevant research problems that remain
invisible to the “black-box” approach but contribute in a fundamental way
to the ultimate goal of gaining a solid understanding of the highly com-
plex nature of traffic flows in large-scale data networks such as the global
Internet. We conclude in Section 5 with thoughts on how to achieve this
ultimate goal. To assist the reader we include at the end a list of the main
abbreviations used in this article.

2 Data networks, data network traffic, and LRD

To appreciate the fundamental differences between voice and data networks,
we first give a brief description of the corresponding network architectures
and technologies, and argue why a rudimentary understanding of these dif-
ferences is crucial when analyzing traffic traces from these networks.

2.1 Networking 101: Voice versus data networks

The public switched telephone network (PSTN) is an example of a connection-
oriented network, where a connection or call between two hosts (e.g., phones,
fax machines, computers) represents the basic building block. The defining
feature of connection-oriented networks is that resources are reserved at the
beginning of a connection or call, freed up when the call terminates, and
are not shared with any other connections for the entire duration of the
call.

One major implication of this design principle for the PSTNs has been
to engineer them in a circuit-switching fashion. There are routers or “way-



Long-Range Dependence and Data Network Traffic 5

stations” internal to the network, which are responsible for forwarding traf-
fic from one link to the next so that it ultimately reaches its destination and
keep track of each currently active connection. When new traffic arrives, the
routers look up its corresponding connection to determine where to forward
the traffic. This abstraction is termed providing “virtual circuits,” because
the network behaves as though it provides a direct physical circuit from the
traffic source all the way to its destination. Many concurrent connections
can be easily “multiplexed,” that is, share a common (expensive) wire or
link, by allocating a fixed amount of the link’s capacity to each connec-
tion. When a new call request arrives, it is easy to look at a link’s current
load and determine whether the link has sufficient capacity to carry the
additional load. Circuit-switching and connection-oriented service are ide-
ally suited for voice traffic that is relatively homogeneous and predictable,
and, from a signaling perspective, spans long time scales. In this setting,
Quality-of-Service, or QoS, in short, reduces to the simple notion of call
blocking (denial of service). Billing is also easy, at least conceptually. Two
important disadvantages are wasted resources (resources are dedicated to
a connection irrespective of how much traffic is sent over the line) and the
need for “smart” routers or switches (each switch has to know the “state”
of every active connection it sees).

These disadvantages became apparent as circuit-switching networks be-
gan to be used more frequently for data communications between hosts,
that is, endpoints which are themselves full-blown computers. First, a typ-
ical data connection is much “burstier” than a voice call because much of
the time the line tends to be idle. This makes circuit-switching inefficient.
Second, computer-generated data traffic is also much more variable than
voice traffic because data connections range from extremely short duration
to extremely long ones, from extremely low-rate to extremely high-rate.
These fundamental differences between data and voice traffic have led to a
design for data networks where the fundamental building block is a packet
of data or “datagram.” Each packet is self-contained in the sense that its
header contains complete “addressing” information, and the routers need
only inspect the header of the packet to determine its destination and for-
ward it through the network. It is transmitted independently from the other
packets. Consequently, the routers do not keep track of each currently ac-
tive connection, and can forget a packet as soon as it has been forwarded.
The shift from circuit-switching to a packet-switching technology for data
traffic was advocated around 1970, when data networks were very small.
Interestingly enough, the basic concept of packet-switching has remained
essentially the same during the past 30 years and continues to represent
one of the few effective technologies for data communication in networks
such as the global Internet—an internetwork made up of 86,000+ separate
networks, with a total of about 90 million hosts as of September 2000, and
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counting.

The implications of adopting a packet-switching technology have been
profound and far-reaching. In contrast to circuit-switching, the concept of
QoS can no longer be simply identified with call blocking; it has become
more complex and multi-faceted. At the same time, packet-switching out-
performs circuit-switching as far as efficiency, robustness, and flexibility are
concerned. First, the physical links in packet-switched environments can
be utilized much more efficiently, because there is no notion of reserving
part of their capacity for each active connection. Newly arriving packets
will grab any capacity available in the network and benefit from it. Each
packet in the network competes with all the others—if there happens to be
little competing traffic along a particular path, then a connection using it
can enjoy the entire capacity (bandwidth) of the path, and transfer its data
very quickly. If many connections compete along the same path, then each
will receive a (perhaps unfair) portion of the available bandwidth. Second,
the routers in a packet-switched network function without any notion of
currently active connections. If a router or link fails, it is a simple matter
to route around the failure—the traffic is simply sent to a different set of
routers and links. The new routers have no problem accepting the rerouted
traffic because, as far as they can tell, it is not in any way “new” traffic—
they have no notion of “current” traffic and hence no problem accepting
traffic they did not until that very moment know existed. This situation is
very different from that in a circuit-switched network, in which the routers
cannot easily accept rerouted traffic because they have no knowledge of the
corresponding virtual circuit.

The ability of a packet-switched network to transparently route around
failures without perturbing active connections buys enormous robustness:
the network can continue to operate and successfully deliver data even in
the face of major equipment failure. It also allows for great flexibility when
connecting new hosts or disconnecting existing endpoints. Finally, links can
become overloaded because packets arrive for transmission along them at
a rate exceeding the capacity of the link. Such packets will be buffered
awaiting transmission along the link, but if the excess rate is sustained—a
condition termed congestion—then ultimately the buffers will be exhausted
and some packets must be discarded, or dropped. To effectively communicate
with one another in such a lossy packet-switched environment, the network’s
end hosts and routers rely on a common “language”—a standard set of
protocols. Protocols will be discussed in more detail in the following sections.

2.2 Data network traffic and LRD

Voice traffic in PSTNs appears relatively easy to model. All that is needed
to describe the temporal dynamic of voice traffic in a connection-oriented
circuit-switched networking environment are the distributions of the inter-
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arrival times and service demands (i.e., durations) of the calls. Moreover,
traditional PSTNs have (or at least used to have) highly predictable growth
rates allowing for fine-tuned short- and long-term capacity planning, their
offered services are strictly regulated and monitored, and their network
controls and operations are fully centralized so as to be able to take full
advantage of information about the network’s global state. All this con-
tributed to the popular belief of the existence of “universal laws” governing
voice traffic. The most significant such law concerns the presumed and re-
peatedly validated Poisson nature of call arrivals at links in the network
where traffic is highly aggregated. A close second is the well-documented
observation that call durations or service demands are generally well de-
scribed by ezxponential distributions.” These two invariants of voice traffic
provide in general a complete description of the dynamic nature of network
traffic in PSTNss.

For data networks, the story is much more complicated. We begin with a
description of one type of measurement, that made of traffic as it transits a
given link. The measurements are made by copying either the initial part of
each packet (i.e., the packet header) or the entire packet (i.e., header plus
payload). In addition, packet time stamps (arrival time), sizes, and other
information is saved. When viewed as “black boxes,” i.e., when focusing
on the mere existence of a measured packet (time stamp, packet size) and
not on its “meaning” as revealed by its header and/or payload, packet traf-
fic appears as not much more than a simple time series; univariate, if we
simply focus on the packet arrival times; multivariate, if we also include
packet size and possibly other status information. Following the example
of voice traffic modeling where this time series analysis view was appro-
priate and highly successful, traditional traffic modeling and analysis for
packet-switched networks has embraced an identical approach, resulting in
a description of packet traffic solely in terms of arrival and service processes.

Given the arrival times and sizes of all packets that traversed a link within
the network during a some time period, a natural object to derive from this
data and to study is the time series X = (X : k = 1,2,...) representing the
number of arriving packets (or bytes) in successive, non-overlapping time
intervals of unit length (e.g., millisecond, 100 milliseconds, second, etc.).
Assuming that X is second-order stationary and has zero mean (i.e., we
think of X as describing the fluctuations of the traffic rate process around
its mean rate), for each integer m > 1, we can define the aggregated process

*See however [19] for drastic changes in the “static” world of PSTNs, caused
by—among other things—new pricing structures, the increased use of faxes and,
more importantly, the use of the voice network to connect to the Internet.
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X of X at aggregation level m by setting

1
X (0) = — (Xgtyms + o+ Xim), 02 1.

That is, the aggregated processes X (™ are obtained from X by partition-
ing the observation interval into non-overlapping blocks of size m and by
viewing the block averages as new observations X (™ (i), where i denotes
the block index. For each m > 1, X(™ defines a new second-order station-
ary and zero mean process, and the family (X(™ : m > 1) of aggregated
processes is ideally suited for studying the temporal dynamic of network
traffic at different time scales and for treating mathematical concepts such
as self-similarity that relate statistical properties of X to those of X (™
through judicious scaling of time and space.

Following Cox [12], we call X asymptotically second-order self-similar
(with self-similarity parameter or Hurst parameter 0 < H < 1) if the second-
order statistics of m!' ¥ X converge as follows:

li_r>n Var(m'™#X™) = 52 0 < 0 < o0, (2.1)
and
1
lim r™ (k) = 5 ((k + 1) — 2k 4 (K — 1)), (2.2)
m—»o0

where 7™ = (r(™(k), k > 0) denotes the autocorrelation function of the
aggregated process X (™. X is called exactly second-order self-similar if for
all m > 1, the processes m' # X(™ have the same second-order statistics
as X; that is, Var(m'=7X(™) = Var(X) = o2 and r™ (k) = r(k) =
S((k+1)*" —2k*" 4 (k — 1)*7), where (r(k),k > 0) is the autocorrelation
function of X. The form of the autocorrelation function appearing in the
limit (2.2) points to the presence of long-range dependence.

Here, a second-order stationary stochastic process X = (Xj : k =
1,2,...) with autocorrelation function r(k) is said to exhibit long-range
dependence (LRD) if for some 0 < § < 1,

r(k) ~cik™?,  as k — oo, (2.3)

where ¢; is a positive finite constant.! In Mandelbrot’s terminology [51],
long-range dependence is also referred to as the Joseph Effect and captures
the persistence phenomenon observed in many naturally occurring empir-
ical time series; that is, the occurrence of pronounced clusters or runs of

tMore general definitions of long-range and short-range dependence are pos-
sible, but for convenience, we will use here the working definition involving con-
ditions (2.3) and (2.4) respectively. The symbol ~ means “asymptotic to”.
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consecutive large or consecutive small values. Note that the hyperbolically
slow decay of the autocorrelations of a long-range dependent process im-
plies >, |r(k)| = oo. It is this non-summability of the autocorrelations
that captures the essence of long-range dependence: even though the high-
lag autocorrelations are individually small, their cumulative effect is of im-
portance and gives rise to a behavior of the underlying stochastic process
that is markedly different from that of the conventionally considered short-
range dependent processes. Here, a second-order stationary stochastic pro-
cess X = (Xi : k =1,2,...) is called short-range dependent (SRD) if for
some 0 < p < 1,

r(k) ~ cop®, as k — oo, (2.4)

where ¢, is a positive finite constant. Thus, in contrast to LRD, SRD is
characterized by an autocorrelation function that decays geometrically fast
and is summable (i.e., Y, |r(k)| < 00).

It is easy to see that when restricting the Hurst parameter H to values in
the interval (0.5, 1), exact or asymptotic second-order self-similarity implies
LRD with f = 2 — 2H. In fact, the most striking feature of second-order
self-similar processes, namely that in the limit, as m — oo, their aggre-
gated processes X (™ possess the non-degenerate autocorrelation function
(2.2), is intimately related to the hyperbolically slow decay (or, equiva-
lently, to the non-summability of the autocorrelations of an LRD process).
This behavior is in contrast to the traditionally studied SRD models with
their geometrically fast decaying (and hence summable) autocorrelations,
whose aggregated processes quickly converge to second-order pure noise;
ie., r™M(k) =0, asm — oo, k> 1.

Consequently, to test for self-similarity, one uses the essentially equivalent
characterizations of LRD in the time-, frequency-, or wavelet-domain. They
can be exploited to measure this phenomenon quantitatively by estimating
the Hurst parameter H. Time-domain estimation techniques are described
in [83, 86] and include heuristics such as analysis of the rescaled adjusted
range statistics (R/S statistic, in short; e.g., see [38, 57, 83|) and variance-
time analysis of the aggregated processes [12, 83]; examples of frequency-
domain techniques are the periodogram analysis [31, 37, 83] and Whittle’s
method [87, 9, 16, 28]. For a wavelet-domain approach, see [1, 25, 2, 3].

Leland et al. [47] introduced the self-similarity and LRD concepts in
the modeling of data network traffic. Starting with the extensive analyzes
of traffic measurements from Ethernet local-area networks (LANSs) over a
four-year period reported in [46, 47|, there have been a number of crucial
follow-up studies providing further evidence of the prevalence of self-similar
traffic patterns in measured traffic from data networks. Most prominent
among these studies are the in-depth analysis and exploration of large
amounts of pre-Web wide-area network (WAN) traffic measurements in
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[64, 65] and—right after the emergence of the Web—detailed investiga-
tions of Web-related traffic on the Internet [13, 14]. One of the most sur-
prising findings from these and many other empirical studies concerns the
ease with which it is possible to distinguish statistically between measured
network traffic and traces generated from the traditional, commonly-used
traffic models: actual traffic exhibits correlations over a wide range of time
scales and the resulting aggregated processes don’t converge to white noise.
Traditional traffic model give rise to traffic traces that quickly become indis-
tinguishable from white noise after aggregation over larger time scales. (For
a simple visualization of this empirical observation, see Figure 4 in [47].)
In short, commonly-used models for data traffic tend to focus on a very
limited range of time scales and are inherently short-range dependent. On
the other hand, measured traffic from actual data networks is fully consis-
tent with long-range dependence or, equivalently, asymptotic second-order
self-similarity.

2.3 When there is more to LRD than model fitting ...

The empirical finding that measured data network traffic is consistent with
LRD (or equivalently, self-similar scaling over sufficiently large time scales;
that is, asymptotic second-order self-similarity) has led to a revival of time
series analysis for modeling packet traffic in data networks. However, tra-
ditional time series analysis, with its main emphasis on finding the “best-
fitting” model for a given single data set of small-medium size is unfortu-
nately ill-suited for identifying, capturing, and describing pertinent statis-
tical characteristics that may be common among a large number of volumi-
nous data sets. As a result, traditional time series analysis has resulted in
an endless stream of proposed “black box” models for data network traffic,
where the focus has been mainly on statistical issues related to model fitting
and where the networking context in which the data had been generated and
collected in the first place has been of little or no significance. Examples of
such “black-box” models include processes that are inherently long-range
dependent (e.g., the well-known classes of fractional Gaussian noise pro-
cesses, fractional ARIMA models, and their stable counterparts) and pro-
cesses that imitate LRD-behavior by relying on sufficiently highly param-
eterized SRD models (e.g., Markov-modulated Poisson processes, ARIMA
and related time series models).

In this sense, traffic modeling has become yet another application of tra-
ditional time series methodologies. Furthermore, the ever-present questions
related to the validity and /or appropriateness of inferring asymptotic statis-
tical features such as LRD from finite data sets have been dealt with using
similar arguments as, for example, put forward in the context of modeling
annual river flow data or financial time series, where—in the absence of
genuine physical understanding—the discussions have been mainly philo-
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sophical in nature (e.g., see [43].

For segments of the Internet research community, the situation couldn’t
be more different. The discovery of LRD in measured data network traf-
fic has been met from the very beginning with a degree of curiosity that
goes beyond the obvious question of how to model a single measured traffic
trace that has been found to be consistent with LRD. Indeed, shortly af-
ter the initial publication of proposed self-similar models [46], an editorial
in IEEE Network began: “This month’s Proceedings of ACM SIGCOMM
'93 has a fascinating paper that anyone interested in congestion control
for data networks should read” [63]. These researchers wanted to know if
there exists a physical explanation for the observed LRD nature of data
traffic—an explanation that makes sense in the networking context and can
be phrased and, more importantly, validated in terms of more elementary
traffic-related entities. Thus, instead of emphasizing the purely descriptive
aspect of LRD (as is done in traditional time series analysis), the question
of how to physically explain LRD constitutes a new research challenge that
has met with little success in areas such as finance or hydrology. To move
beyond the conventional time series analysis perspective of data traffic and
succeed in tackling the problem of explaining the physics behind LRD in
data traffic, it is essential to know more about the design and architecture
principles behind today’s data networks.

3 LRD and large-time scaling: An application-layer
view

In order to explain the relationship between networking and LRD, we first
need to discuss in more detail the concept of a layered protocol architecture
for data networks such as the Internet. Then, recalling that LRD involves
large-time scales and leaves the small-time scales essentially unspecified,
we will show how measured data network traffic lends itself naturally to a
decomposition into individual components which typically include, at the
highest layer, the features that explain the observed LRD property.

3.1 Networking 101: The TCP/IP protocol architecture

Today’s data networks are highly engineered entities that enable the ex-
change of data between any set of end hosts. Due to the richness and com-
plexity of the procedures governing such exchanges, an early design principle
has been to avoid implementing a complex task such as a file transfer be-
tween two end hosts as a single module, but to instead break the task up
into subtasks, each of which is relatively simple and can be implemented
separately. The different modules can be thought of being arranged in a
vertical stack, where each layer in the stack follows a certain “protocol;”
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that is, it is responsible for performing a well-defined set of functionalities.
Each layer relies on the next lower layer to execute more primitive func-
tions, and provides services to the next higher layer. Two hosts with the
same protocol architecture communicate with one another by having the
corresponding layers in the two systems talk to one another. The latter is
achieved by means of formatted blocks of data that obey a set of rules or
conventions known as a protocol.

To illustrate this layering design, we consider below the five-layer TCP /IP
protocol suite, which is the main protocol stack in the Internet. It consists
of the physical, link, internetwork, transport, and application layers. The
physical layer concerns the physical aspects of data transmission on a par-
ticular link, such as characteristics of the transmission medium, the nature
of the signal, and data rates. Above the physical layer is the link layer.
Its mechanisms and protocols (e.g., signaling rules, frame formats, media-
access control) control how packets are sent over the raw media of indi-
vidual links. Above that is the internetwork layer, responsible for getting
a packet through an internet, i.e., a series of different networks. Here, the
main challenge is to adequately implement all the mechanisms necessary
to knit together divergent networking technologies into a single virtual net-
work, “an internet,” so as to enable data communication between sending
and receiving hosts that reside on different types of networks.

The Internet Protocol (IP) is the internetworking protocol for TCP/IP.
(TCP is involved in the next higher layer and will be discussed below). To
send data, a host that resides on, say, an Ethernet, simply sends its data
encapsulated in the internetworking protocol (i.e., IP over Ethernet). If the
IP datagram needs to be sent to a host on, for example, an ATM network,
the datagram will go through a router which will remove the datagram from
its Ethernet encapsulation and put it into the ATM encapsulation. Clearly,
internetworking protocols are crucial for enabling computers on different
types of networks to communicate with one another so that networking
boundaries become transparent to the users.

The layer above IP is the transport layer, where most commonly the
Transmission Control Protocol (TCP) deals with end-to-end congestion con-
trol and assures that arbitrarily large streams of data are reliably delivered
and arrive at their destination in the order sent. The top layer is the appli-
cation layer, which includes a wide range of applications such as TELNET
(to establish a remote connection), FTP (the File Transfer Protocol), and
HTTP (the Hypertext Transfer Protocol, used for access to the World Wide
Web).

With high-quality traffic measurements at hand, accurate accounting of
this multi-level hierarchy of measured network traffic is possible because
all the relevant information can be obtained by looking inside the collected
packets. For layers up to transport, checking the header of each recorded
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packet suffices; for application layer analysis, though, it is also necessary
to take a look at the actual payload of the packets. At this stage, network
traffic is no longer a simple uni- or multivariate time series of packets, but
manifests itself at the different networking layers in a variety of different
forms. Consider, for example, the Internet. Starting at the top layer, namely
at the application level, we can describe the traffic in terms of session ar-
rivals, session duration, and session size (examples of sessions are remote
login, file transfer, or web surfing). At the transport layer, the overall traffic
can be characterized in terms of TCP connection arrivals, lengths and sizes
(other components of the traffic that employ transport protocols other than
TCP have their own characterization); there may be many connections cor-
responding to a single session. At the internetwork layer, traffic descriptions
focus on either individual IP packets, or on flows (i.e., their arrival patterns,
sizes, origination and destination addresses), where flows are made up of
successive IP packets that satisfy certain common features. Again, there
may be many packets or even flows corresponding to a single connection.
Alternatively, we can view network traffic as an aggregate of packets gener-
ated by many host-host pairs. Finally, at the link layer, traffic can be dealt
with by treating the individual packets as black boxes, i.e., by focusing on
the mere existence of a measured packet (time stamp, packet size) and not
on its “meaning” as revealed by its header.

Clearly, as a result of this hierarchy of protocol architectures, actual net-
work traffic, that is, the flow of packets across a link inside the network, is
the result of intertwined mechanisms and modes that exist at the different
networking layers. Focusing on the “black box” view of packet traffic by
using uni/multivariate time series does not do justice to the highly hier-
archical and interconnected structure of actual data network traffic. Black
boxes ignore nearly all of the gathered information and are therefore in-
capable of contributing significantly to an improved understanding of data
networks and data network traffic.

3.2 Mathematical frammework I: The on-off source model

In a first attempt to move beyond the traditional “black-box” approach
to modeling packet traffic, we follow closely [91, 85] and consider a highly
simplified abstraction of network traffic at the application layer where users
or end hosts cycle through periods of activity (when packets are sent) and
inactivity (when no packets are transmitted). In particular, as part of this
abstraction, we are not concerned about the precise nature of how packets
are transmitted during an activity period but assume for simplicity that
they are sent at a constant rate. Thus, we consider a network with a num-
ber of users/sources or end hosts communicating with each other, where an
individual source is modeled according to an on-off alternating renewal pro-
cess, as follows. The source alternates between an active or on state where
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it sends packets into the network and an inactive or off state where it is idle
and does not send any packets. Let {WW (t), t > 0}, be a stationary process,

where
1 if time ¢ is an on interval,

W(t) =

0 if time ¢ is in off interval.

(We will simply say that W (¢) is 1 if ¢ is on and 0 if ¢ is off.) Viewing W (¢)
as the reward at time ¢, we have a reward of 1 throughout an on interval,
then a reward of 0 throughout the next off interval, then 1 again, and so
on. The length of the on intervals are i.i.d., those of the off intervals are
i.i.d. and the lengths of on and off intervals are independent. An off interval
always follows an on interval, and it is the pair of on and off intervals that
defines an interrenewal period.

Let F,, and F,p denote the cumulative distribution function of the on
and off interval respectively, and let F = 1 — F denote a complementary
cumulative distribution function. Let also o,, and o,z denote the respective
variances. Assume as T — 00,

either Fop(x) ~ LonT @, 1 < Qop < 2 0OF 0y < 00,

and
either Faﬁc(m) ~ Lg% 1 < oy <2 or oy < 00.

Here ¢,, and ¢, are constants. (For simplification, we do not use general
slowly varying functions.)

When 1 < a,, < 2, the distribution of the on times is said to be “heavy-
tailed” with exponent c,,. Since it has infinite variance (but finite mean),
the on time can be very long with relatively high probability. We will refer
to the case 02, < 0o as “a,, = 2.7 In this case, the on times are not likely
to last very long. They can be for example exponential, as in the classical
model of Poisson arrivals. Similar remarks hold for the distribution of the
off times.

We are interested in understanding the behavior of the cumulative load,
At) = fot W (u)du, at large times ¢. The load A(t) has variance

V(t) = VarA(t) = Var ( /0 tW(u)du) —9 /0 t < /0 vy(u)du) d (3.1)

where
v(u) = EW ()W (0) — (EW(0)) (3:2)

denotes the covariance function of W. One can show [85] that this implies
that

V() ~o* " as t— o0 (3.3)
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for some constant o > 0. The constant H is given by

H=3" min(;‘)"’ Gop) (34)

To grasp the importance of (3.3), suppose momentarily that this relation
holds. Then, with M independent and identically distributed sources, the
aggregate load at time ¢ will be Z%Zl W™ (¢). Now consider the renor-
malized aggregate load M~Y/2 "M (W™ (t) — EW™(t)). As M — oo, it
satisfies

M
; -1/2 (m) (4} _ (m) —
£ lim M T’;(W (t) — EW™ (1)) = G(t), t >0,

by the usual Central Limit Theorem (£ denotes convergence of the finite
dimensional distributions). The process {G(t), t > 0} is Gaussian and
stationary (since the W,,(t)’s are stationary) and has covariance function
{7(t), t > 0}. If we also aggregate and renormalize time, considering for
each T > 0 the process (T*1L(T))~'/? fOTtG(u)du, t > 0, we get, after
applying (3.3),

Tt

L lim T7# G(u)du = oBy(t), t > 0. (3.5)

T—00 0

The process {Bg(t), t > 0} which now appears in the limit is fractional
Brownian motion, a Gaussian process with stationary increments, mean 0
and variance t2. Indeed, the limit in (3.5) must be Gaussian with mean
zero and have stationary increments since the integral of G has these prop-
erties. Moreover, by (3.3), its variance must be o?t* for fixed ¢. Since
these properties characterize fractional Brownian motion (Samorodnitsky
and Taqqu [80], Corollary 7.2.3, p. 320), Relation (3.5) follows, and hence
we have

Tt M

1
£ lim £ lim > (W (u) — EW™ (u))du = 0By(t), t > 0.

1
T—y00 M—)ooﬁ\/M/o
(3.6)

This result states that when properly normalized, the aggregated total load
converges to fractional Brownian motion as we first let the number of sources
M go to infinity and then consider the aggregate load over larger and larger
time intervals (i.e., let the time scale factor T tend to infinity); for details
see [85].

To obtain (3.6), it was crucial to first let M — oo and then 7" — oco. In
fact, if we reverse the order and consider the limit where first 7' — oo and



16 Walter Willinger, Vern Paxson, Rolf H. Riedi, Murad S. Tagqu

then M — oo, after changing the normalization accordingly, one can show
[85] that in this case,

Tt M
£ lim £ lim — / (1) — EW™ (u))du = cSa(£), ¢ > 0,

M—oo T—oo Ml/o‘ Tl/"‘

(3.7)

where
a = min(aon, Aop)

and S,(t) is a, generally skewed, Lévy stable motion, a process with inde-
pendent and stationary increments but with infinite variance. For example,
if aon < aop, the skewness parameter of S, equals 1, that is, the distri-
bution of S,(t) is totally skewed to the right. Expressed in terms of the
aggregated total load AM fo M W) (u)du, relations (3.6) and
(3.7) become

(M) — EAM)
L lim £ lim AT(T) — EAT(TY)

= >
T—o0 M—o TH/ M OBH(t)’ t= O’

and an(ry o
. . AWI(Tt) - FA
£, L A, T ) e
What happens if 7" and M go together to infinity? Mikosch, Resnick,
Rootzén and Stegeman [61] answer this question by considering an integer-
valued function M (T') which is non-decreasing in 7" and which tends to
infinity as T' — oo. They show that under the fast growth condition

T _ s, 1> 0.

lim M(T)

T-00 To—1

= 00, (3.8)

the limit is the fractional Brownian motion By (t) and under the slow growth
condition

lim M(T)

T—oo T~ 1

=0, (3.9)

the limit is the Lévy stable motion S,(t) of (3.7).

Finally, instead of on-off or 0/1-valued alternating renewal processes, one
can also consider renewal processes where the rewards are chosen from a
distribution that has infinite variance. In this case, the limit depends also
on the relative magnitude of 1 < o < 2 (“heavy tailed” exponent of the
renewal interval) and 0 < < 2 (“heavy-tailed” exponent of the reward).
The limit is the Lévy stable motion if 5 < « in the case T — oo first and
then M — oo or in the case where the order of M and T is reversed, and
also in the case § > « when T — oo first, followed by M — oo (Levy
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lim lim lim lim
M—o0 T—o0 T—o0 M—o00
B o-LSM B FBM
2 BM 2 - BM
P New Process .~
O(—LSM/,/ a
1] I B-LSM | 1. 1 B-LSM
B-LSM B-LSM
0 o 0,/ a
0 1 2 0 1 2
a=2 a=2
b=a=2: BM B=a=2: BM
0<f<a=2: B-LSM 0<f<a=2: B-LSM

l<a<p=2 a-LSM l<a< p=2: FBM
I<a<fB<2: Zg

0<fB<a<2: B-LSM 0<fB<a<: B-LSM

TABLE 1.1. The table indicates the possible limits depending on the respective
value of «, the interrenewal exponent and 3, the reward exponent. The possible
limits are BM = Brownian motion, FBM = fractional Brownian motion, LSM =
Lévy stable motion, Zg = the new self-similar stable process with index 8 and
dependent increments.
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and Taqqu [45]). However, the interesting case is 1 < a < 8 < 2, with
M — oo first followed by 7" — oo. This is the case which gives fractional
Brownian motion when 8 = 2 (finite variance rewards). The limit turns
out to be B-stable, self-similar with stationary increments (Levy and Taqqu
[48]). But it is not fractional stable motion, which is the commonly used
extension of fractional Brownian motion to the stable domain. The limit is
a “mixed moving average”type process (for details, see Pipiras and Taqqu
[69]). These results are summarized in Table 1.1.

Pipiras, Taqqu, and Levy [70] describe what happens in this situation
when M and 7' go to infinity together. Interestingly, the fast growth and
slow growth conditions are exactly the same as in (3.8) and (3.9) respec-
tively, and therefore they do not depend on 3. Under the fast growth con-
dition (3.8), one obtains in the limit the S-stable, self-similar process with
stationary increments mentioned above, and under the slow growth condi-
tion (3.9), one obtains a symmetric Lévy stable motion S, (). See Taqqu
[81] for an overview.

The use of on-off models (or more generally, of renewal reward processes)
to generate fractional Brownian motion and/or symmetric Lévy stable mo-
tion was originally proposed by Mandelbrot [49] in an economic context
(see Taqqu and Levy [82] for a description). Resnick and Samorodnitsky
[71] provide an overview of different approaches to the subject.

3.3 Mathematical framework II: The infinite source Poisson model

An alternative to the superposition of on-off sources is the infinite source
Poisson model. In this model, sources arrive at the link at a rate of A, each
source transmits for a random time with distribution F,,(z) ~ lz=%, = —
o0, 1 < a < 2, and upon completing transmission, the sources remain
inactive. The variance of the transmission times is infinite but their mean
lon is finite. The transmission times are assumed i.i.d. This model provides
another appealing abstraction of network traffic at the application layer in
the sense that it views traffic as being generated by “sessions” which arrive
in a Poisson fashion and whose sizes (in bytes or packets) or durations (in
time) are heavy-tailed with infinite variance. In fact, the infinite source
Poisson model is closely related to the on-off source models considered in
Section 3.2 above— it is A, here, which plays the role of M.

Let W (u) denote the number of active sources in the infinite source Pois-
son model at time v > 0 and let A(t) = fot W (u)du be the aggregated load
from time 0 to time ¢t > 0. The behavior of the system depends on the
relative size of the arrival rate A and the time horizon 7. Mikosch, Resnick,
Rootzén and Stegeman [61] show that under the fast growth condition

lim A(T) =

T—oo T~1
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one has A(Tt) — FA(Tt
L lim () - (T)

Tooo A\/2T(3-a)/2

and under the slow growth condition

- CIBH(t): t Z Oa

lim A(T)

T—oo To‘fl

=0,

one has A(Tt) — EA(Tt
£ lim (T't) -~ EA(TY)

T—o0 )\1/ O‘Tl/ @
Observe that one has EA(t) = popAt.
The infinite source Poisson model was originally considered by Cox [12]
and is also known as M/G/oco model or immigration-death process. As a traf-
fic workload model, the convergence result that yields fractional Brownian
motion in the limit was originally established by Kurtz [44].

= CZSa(t), t Z 0.

3.4 Empirical validation: Source-level traffic characteristics

The structural modeling approaches involving the infinite source Poisson
model and the different kinds of aggregations of on-off sources provide a
networking-related understanding of the self-similarity phenomenon that is
observed in measured data traffic, by relating it to more elementary prop-
erties of the traffic patterns generated by individual users and/or appli-
cations. We can now explain why data traffic exhibits self-similar scaling
properties over large enough time scales. Part of the appeal of this new un-
derstanding is that the corresponding mathematical arguments are rigorous,
simple, and closely related to familiar concepts (even though the resulting
mathematical objects defy tradition and fall outside the commonly dealt-
with Markovian framework). They are in agreement with the networking
researchers’ intuition, and can readily be explained to non-networking ex-
perts and non-mathematicians. These developments have helped immensely
in demystifying self-similar traffic modeling. They have given rise to a phys-
ical understanding of the effects of LRD on the design, management and
performance of modern data networks.

More importantly, these structural models involve elementary quanti-
ties (e.g., arrivals and durations for sessions, TCP connections, IP flows,
or on/off-periods) that (i) correspond to different networking mechanisms,
and (i) can be measured. One can check, in particular, whether the sta-
tistical characteristics of these elementary quantities are in agreement with
the mathematical assumptions made in Sections 3.2 and 3.3. For example,
Willinger et al. [90, 91] revisited the data from [47] and performed an exten-
sive analysis of the data at the level of individual source-destination pairs.
The results confirmed that the measured traffic at that level was consis-
tent with the assumed on-off behavior. In particularly, they found that the
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durations of the on- and/or off-periods conformed to heavy-tailed distri-
butions with finite mean and infinite variance; i.e., 1 < o, oy < 2. In
addition, an intuitive argument was given that relates the heavy-tailedness
of the on-periods to the empirically observed heavy-tailedness of file sizes
on file servers. Similar results were reported in [14] and used to attribute
the observed self-similar scaling behavior of aggregate Web traffic to the
fact that the measured traffic is the superposition of heavy-tailed on-off
sources, where the on-periods correspond to the transmission durations of
individual Web documents (which have been observed to be consistent with
heavy-tailed behavior) and the off-periods correspond to times when no data
are transmitted.

In contrast to on-off source models and their variants, the infinite source
Poisson models tend to be especially appropriate when one can reconstruct
from packet-level measurements network activity at the application level in
the form of session arrivals and session sizes (number of packets or bytes)
or durations (e.g., in seconds). Because of how the different applications
are structured, determining session entities such as arrival times and sizes
is straightforward for FTP and TELNET, but is in general not possible in the
case of the HTTP (i.e., Web application). For Internet traffic, Paxson and
Floyd in [65] showed that the arrivals of both FTP and TELNET sessions
are consistent with (nonhomogeneous) Poisson processes, with rates that
are constant over about an hour, and that the distributions of measured
FTP session sizes or durations are heavy-tailed, with upper tails that are
consistent with finite mean but infinite variance. As far as measured HTTP
sessions are concerned, indirect evidence in favor of their heavy-tailed size
or durations is given in [89], where HTTP connections are shown to be con-
sistent with heavy-tailedness with 1 < a < 2. (An HTTP session is typically
made up of many HTTP connections.) For more direct empirical evidence
for the appropriateness of the infinite source Poisson model for HTTP traffic,
we refer to a study by Feldmann et al. [25]. These authors associate HTTP
sessions within a commercial Internet Service Provider (ISP) with individ-
ual modem calls and, by matching the appropriate packets with appropriate
data collected about each modem call, they are able to validate that session
arrivals are consistent with an (inhomogeneous) Poisson process, and that
session sizes or durations conform to the desired heavy-tailedness property.

3.5 When there is more to data network traffic than LRD ...

That we can explain the empirically observed LRD of aggregate data traffic
in terms of the statistical properties of the individual connections that make
up the overall traffic rate process suggests that the LRD nature of data
traffic is mainly caused by user/application characteristics (i.e., Poisson
arrivals of sessions, heavy-tailed distributions with infinite variance for the
session sizes/durations) and has little to do with the network (i.e., with the
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predominant protocols and end-to-end congestion control mechanisms that
determine the actual flow of packets in modern data networks). In fact, for
the LRD or asymptotic self-similarity property of aggregate data traffic over
large time scales to hold, all that is needed is that the number of packets
or bytes per individual connection be heavy-tailed with infinite variance,
and the precise nature of how the individual packets within a session or
connection are sent over the network is largely irrelevant. The network
is simply here to transmit data, and how the network accomplishes the
data transfer has—to a first order—no significant impact on the apparent
characteristics of data traffic viewed over large time scales.

Note that this understanding of data traffic started with an extensive
analysis of measured aggregate traffic traces, followed by the statistically
well-grounded conclusion of their LRD property. It triggered the curiosity
of networking researchers who wanted to know “Why LRD or self-similar?”
In turn, this searching for a physical explanation resulted in findings about
data traffic at the connection level. In this sense, the progression of results
proceeded in an opposite way of how traffic modeling has been traditionally
done in this area; namely, by first analyzing in great detail the dynamics of
packet flows within individual connections and then by appealing to some
mathematical limiting result that allowed for a simple approximation of
the complex and generally over-parameterized aggregate traffic stream. In
contrast, the finding of LRD in data traffic traces has demonstrated that
new insights about the nature of actual data traffic can be gained by first
performing a careful statistical analysis of measured traffic at the aggregate
level, and then by explaining the aggregate traffic characteristics in terms
of more elementary properties that are exhibited by measured data traffic
at the connection-level.

A natural next step is the realization that measured data traffic exhibits
further structure when analyzing it over small time scales. From a network-
ing perspective, this observation translates into “If LRD is mainly a prop-
erty of user/application behaviors, where is the network?” Phrased even
more succinctly, the questions are “What is large-scale?” What is small-
scale? Where is the transition and what is its relevance for networking?”
In fact, since networking algorithms such as protocol-specific rules typically
operate on small time scales and largely determine the actual flow of traffic
across the network, they can be expected to create pronounced local varia-
tions in the small-scale features of data traffic, and render these small-scale
features different from the observed large-time (i.e., LRD) behavior. Stud-
ies of the fine-time scale structure of data traffic require a more detailed
knowledge of the dominant protocols, or at least of their most pronounced
features. To this end, we focus in Section 4.1 below on the most commonly
used transport layer protocol, TCP, and some of its critical functionalities.
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4 LRD and small-time scaling: A network-layer view

Before discussing evidence that suggests the presence of additional structure
when studying data traffic over small time scales, we first discuss (at a rel-
atively high level) TCP, one of the most important transport protocols. We
illustrate how its rules and mechanisms for flow, error and congestion control
are capable of introducing traffic patterns, usually localized in time, that
range from very regular to highly irregular. Recalling that LRD leaves the
small-time scale behavior (or, equivalently, the small-lag correlation struc-
ture or high-frequency component of the spectrum) essentially unspecified,
we introduce, in this section, the mathematical concept of multifractals that
may be relevant in some situations for dealing with the observed irregular
behavior of measured data traffic over small scales.

4.1 Networking 101: A TCP primer

As mentioned above, when more packets arrive at a router than it can for-
ward along its links, these packets are queued in memory buffers. If the ex-
cess rate is sustained (congestion), the buffers will be ultimately exhausted
and some packets will have to be dropped from the buffer. Consequently,
“socially responsible” protocols used for exchanging data across the Inter-
net include various types of end-to-end congestion control mechanisms that
automatically decrease the rate at which data is transmitted when con-
gestion is detected. These introduce significant, complicated correlations
across time, among active connections, and between the different layers in
the protocol hierarchy. Many models of aggregate data traffic on a network
link ignore the fact that the link has finite capacity. Yet it is precisely this
finite capacity that drives the dynamics of protocols such as TCP and cou-
ples the different simultaneous connections sharing the link in intricate and
complex ways.

As a specific illustration, consider TCP, the predominant transport layer
protocol in the Internet. The service provided by TCP is to deliver a stream
of data to a receiver such that the entire stream arrives in the same order,
with no duplicates, and reliably even in the presence of packet loss, reorder-
ing, duplication, and rerouting. TCP splits the data into segments, with one
segment transmitted in each packet. The receiver acknowledges the receipt
of segments if they are “in order” (it has already received all data earlier in
the stream). Each acknowledgment (ACK) also implicitly acknowledges all
of the earlier-in-the-stream segments, so the loss of a single ACK is rarely
a problem; a later ACK will cover for it, as far as the sender is concerned.

The sender runs a timer so that if it has not received an ACK from the
receiver for data previously sent when the timer expires, the sender will
conclude that the data (or all of the subsequent ACKs) was lost and re-
transmit the segment. In addition, whenever a receiver receives a segment
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that is out of order (does not correspond to the next position in the data
stream), it generates a “duplicate ACK,” that is, another copy of the same
ACK as it sent for the last in order packet it received. If the sender observes
the arrival of three such duplicate ACKs, then it concludes that a segment
must have been lost (leading to a number of out-of-order segments arriv-
ing at the receiver, hence the duplicate ACKs), and retransmits it without
waiting first for the timer to expire.

Imagine, for example, that segments 1 and 2 are sent, that 1 is received
and 2 is lost. The receiver sends the acknowledgment ACK(1) for segment
1. As soon as ACK(1) is received, the sender sends segments 3, 4, and
5. If these are successfully received, they are retained by the receiver, even
though segment 2 is missing. But because they are out of order, the receiver
sends back three ACK(1)’s (rather than ACK(3), ACK(4), ACK(5)). From
the arrival of these duplicates, the sender infers that segment 2 was lost
(since the ACKs are all for segment 1) and retransmits it.

A key requirement for attaining good performance over a network path is
that the sender must in general maintain several segments “in flight” at the
same time, rather than just sending one and waiting an entire round trip
time (RTT) for the receiver to acknowledge it. However, if the sender has
too many segments in flight, then it might overwhelm the receiver’s ability
to store them (if, say, the first is lost but the others arrive, so the receiver
cannot immediately process them), or the network’s available capacity.

The first of these considerations is referred to as flow control, and in
TCP is managed by the receiver sending an advertised window informing
the sender how many data segments it can have in flight beyond the latest
one acknowledged by the receiver. This mechanism is termed a “sliding
window,” since each ACK of new data advances a window bracketing the
range of data the sender is now allowed to transmit. From the perspective of
network dynamics, a very important property of a sliding window protocol
is that it leads to self-clocking. That is, no matter how fast the sender
transmits, its data packets will upon arrival at the receiver be spaced out
by the network to reflect the network’s current carrying capacity; the ACKs
returned by the receiver will preserve this spacing; and consequently the
window at the sender will advance in a pattern that mirrors the spacing with
which the previous flight of data packets arrived at the receiver, which in
turn matches the network’s current carry capacity. Thus, TCP has intrinsic
to it a mechanism that generates structure on the time scale of a RTT.

In addition, TCP maintains a congestion window, or CWND, that controls
how the sender attempts to consume the path’s capacity. At any given time,
the sender confines its data in flight to the lesser of the advertised window
and CWND. Each received ACK, unless it is a duplicate ACK, is used as an
indication that data has been transmitted successfully, and allows TCP to
increase CWND. At startup, CWND is set to 1 and the slow start mechanism
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takes place, where CWND is increased by one segment for each arriving ACK.
The more segments that are sent, the more ACKs are received, leading to
exponential growth. (The slow start procedure is “slow” compared to the
old mechanism which consisted of immediately sending as many packets
as the advertised window allowed.) If TCP detects a packet loss, either
via duplicate ACKs or via timeout, it sets a variable called the slow start
threshold, or SSTHRESH to half of the present value of CWND. If the loss
was detected via duplicate ACKs, then TCP does not need to cut back its
rate drastically: CWND is set to SSTHRESH and TCP enters the congestion
avotidance state, where CWND is increased linearly, by one segment per RTT.
If the loss was detected via a timeout, then the self-clocking pattern has
been lost, and TCP sets CWND to one, returning to the slow start regime in
order to rapidly start the clock going again. When CWND reaches the value
of SSTHRESH, congestion avoidance starts and the exponential increase of
CWND shifts to a linear increase. (For more details, see e.g. Peterson and
Davie [68]).

The key point concerning TCP’s management of the congestion window
is that it leads to TCP traffic dynamically adapting to changing network
conditions, and it does so on time scales of a few RTTs. Accordingly, TCP
traffic is shaped by current conditions; it cannot be played back in some
other context (for example, trace-driven simulation) without great care in
understanding how the traffic would have adapted differently in that differ-
ent context.

4.2 Multifractals as a mathematical framework

We have seen in Section 3 that user behavior and/or application-layer
characteristics are primarily responsible for the observed LRD property
of network traffic and hence for the self-similar scaling behavior of aggre-
gate network traffic over large time scales. Specifically, we have seen that
the fluctuations of measured traffic rate processes around their mean rate
(when measured over sufficiently large time scales) tend to be consistent
with fractional Gaussian noise. The latter provides a complete statistical
description of the traffic as seen on a single link and when aggregated over all
users/connections and over sufficiently large time periods. However, by their
very definition, asymptotic properties (in the limit as we look over larger
and larger time scales) such as LRD or, equivalently, asymptotic second-
order self-similarity, leave the small-time scaling behavior of the measured
traffic essentially unspecified and allow for different possible descriptions of
the fine structure of the observed traffic. Thus, in order to develop models
of measured network traffic capable of accounting for small time scales, we
need a mathematical framework that extends beyond fractional Gaussian
noise, one that can handle highly irregular or regular behavior well-localized
in time. This leads us to the study of the differentiability, fractality and reg-
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ularity of stochastic processes; that is, properties that are inherently related
to the high-frequency behavior or small-lag correlations and have little to
do with low-frequency components and/or high-lag correlations, except that
the latter dominate as soon as smoothing or aggregating in time has suc-
cessfully wiped out any interesting small-time peculiarities, leaving us with
LRD or its close relative, i.e., self-similarity, as predominant and universal
characteristics.

Local irregularity /regularity: Using first the more traditional time
domain-based approach to quantifying locally irregular behavior in a mea-
sured signal at a particular point in time %y, we follow closely [78] and let
Y = (Y(t) : 0<t<1) denote the process representing the total number
of packets or bytes sent over a link up to time ¢. For some n > 0, consider
the traffic rate process Y ((k, +1)27") — Y (k,27"); k, = 0,1,...,2" — 1;
that is, the total number of packets or bytes seen on the link during non-
overlapping intervals of the form [k,27", (k, + 1)27™). We say that the
traffic has a local scaling exponent «(ty) at time ¢, if the traffic rate pro-
cess behaves like (277)%%), as k,2™" — ¢, (n — 00). Note that a(ty) > 1
corresponds to instants with low intensity levels or small local variations
(Y has derivative zero at tg), while a(ty) < 1 is found in regions with high
levels of burstiness or local irregularities. Informally, we call traffic with
the same scaling exponent at all instants g monofractal (this includes ex-
actly self-similar traffic, for which a(ty) = H, for all ¢;), while traffic with
non-constant scaling exponent «(ty) is called multifractal. More formally,
the degree of local irregularity of a signal Y or its singularity structure at
a given point in time ¢, can be characterized to a first approximation by
comparison with an algebraic function, i.e. a(tp) is the best (i.e., largest)
a such that |Y(t') — Y(ty)| < Clt' — to]?, for all ¢’ sufficiently close to .
a(ty) is called the singularity or Hélder exponent at time ¢y and can be
shown—passing to Fourier space—to be a generalization of the degree of
differentiability. If Y has positive increments, this singularity exponent can
be approximated through the somewhat simpler quantity

a(ty) = lim ay(ty), (4.1)
n—0o0
where—assuming the limit exists—for to € [k,27", (k, + 1)27"),
1
an(ty) = ap = ——log, [V((kn +1)27") = Y(ka2™)|.  (4.2)

A second approach for dealing with locally highly irregular/regular sig-
nals is wavelet domain- rather than time domain-based. The wavelet-based
method exploits the fact that the wavelet decomposition of a given signal
contains information about its locally irregular behavior. In fact, the singu-
larity or Holder exponent «(ty) is related to the decay of wavelet coefficients
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w;x = [ Y(s);k(s)ds around the point ¢, where ¢ is a bandpass wavelet
function and where t;,(s) := 279/2 1)(279s — k) (e.g., in the case of the
well-known Haar wavelet, )(s) equals 1 for 0 < s <1, =1 for 1 < s < 2,
and 0 for all other s; for a general overview of wavelets, we refer to [17]).
For example, assuming only that [ 1(s)ds = 0, one can show as in [40] that

22, < C-27 M0 ag k27— 1, (4.3)

Moreover, it is known that under some regularity conditions (for a precise
statement, see [40] or [17, Theorem 9.2]), relation (4.3) characterizes the
degree of local irregularity of the signal at the point #,. This suggests to
define a new exponent &(ty) = lim,_, o &y (to), where

Gn(to) = &2 = %nglog (22 w_p ). (4.4)
While this wavelet-based approach may give rise to a different description
of the singularity structure of Y than the earlier-described time domain
method, particularly for non-monotone processes (for an example, see [30]),
we will discuss later in this section some definitive advantages that the for-
mer seems to have over the latter when analyzing measured TCP/IP traces.

Multifractal analysis (MFA): What follows is an intuitive way of
understanding multifractals. (For a mathematical account of the subject,
see [74].) The aim of multifractal analysis (MFA) is to provide information
about the singularity exponents in a given signal (as defined in equations
(4.2) and (4.4), resp.) and to come up with compact geometrical or statis-
tical descriptions of the signal’s overall singularity.

Conceptually, the time domain is the most obvious one for a geometrical
formulation of MFA. Its objective is to quantify what values of the limiting
scaling exponent «(t) appear in a signal and how often one will encounter
the different values. In other words, the focus here is on the “size” of the
sets of the form

Ko=1{t: alt)=a). (4.5)

To illustrate, tale Y to be FBM. Then there exists only one scaling exponent,
(i.e., a(t) = H), the set K, is either the whole line (if « = H) or empty, and
FBM is therefore said to be “mono-fractal.” Similarly, for the concatenation
of several FBMs with Hurst parameters H' in the interval I* = [i,7+ 1], we
have Ky = I*. In general, however, the sets K, are highly interwoven and
each of them lies dense on the line. Consequently, the right notion of “size”
is that of the fractal Hausdorff dimension dim(K,) which is, unfortunately,
impossible to estimate in practice, because its definition involves taking
a double limit (see e.g. Falconer [23]). This drawback severely limits the
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usefulness of the geometrical approach to MFA and suggests considering
instead statistical descriptions of the multifractal structure of a given signal.

One such description involves the notion of the coarse Holder exponent
(4.2). To illustrate, we fix a path of ¥ and consider a histogram of the
a’s (k = 0,...2" — 1) taken at some finite level n. It will show a non-
trivial distribution of values, but is bound to concentrate more and more
around the expected value as a result of the LLN: values other than the
expected value must occur less and less often. To quantify the frequency
with which values other than the mean value occur, we make extensive use of
the theory of large deviations. Generalizing the Chernoff-Cramer bound, the
large deviation principle (LDP) states that probabilities of rare events (e.g.,
the occurrence of values that deviate from the mean) decay exponentially
fast. To apply the LDP approach to our situation, consider the fixed path of
Y at the location ¢, where the encoding of ¢ by k&, viat € [k,27", (k,+1)27")
represents the only randomness relevant for applying the LDP. Since k,, can
take only 2" different values which we will assume to be all equally likely, the
relevant probability measure for ¢ is the counting measure P;. The sequence
of random variables of interest for our purpose is

Vo = —logy |[Y((kn +1)27") = Y(k,27")| = noy, . (4.6)

Trying to obtain more precise information about the singularity behavior,
we define the following limiting “rate function” f which will exist under
mild conditions [73, Theorem 7]:

f(@) :=lim lim llog2 fule€), (4.7)

e—>0n—oo N
with

fola,€) :=2"P, [a +e>an(t) > a—e| =#{an(t) € (a—€e,a+¢)}.
(4.8)

The counting in (4.8) relates to the notion of dimension: if f(«) = 1 then
all or at least a considerable part of the o}’s are approximatively equal to
a, i.e., fo(a,€) = 2" Such is the case for FBM with o = H; but we also
have f(«) =1 if only a certain constant fraction of a,’s equals «, as is the
case with the concatenation of FBMs described earlier [76]. Only if certain
values of «, are considerably more spurious than others will we observe
f(a) < 1. In fact, it can be shown [77, 74] that the rate function f(«)
relates to the Hausdorff dimension dim(K,) and that we have

dim(K,) < f(a). (4.9)

It is in this sense that f provides information on the occurrence of the vari-
ous “fractal” exponents a and has been termed multifractal spectrum. Also,
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note that the rate function f is a random element because it is defined for
every path of Y.

Multifractal formalism: Although f can, in principle, be computed in
practice, it is a very delicate and highly sensitive object, mainly because of
its definition in terms of a double limit (see (4.7)). Fortunately, the LDP-
result suggests an alternative method for estimating f that avoids double-
limit operations and is generally more robust because it involves averages.
In fact, in an attempt to investigate the scaling behavior of the higher-
order moments of the traffic rate process, consider the partition function

7(q) defined by
. _1 n 174 . _1
7(g) == lim — log, (2"E;[2""]) = lim — log, S (q), (4.10)
n—oo 7 n—oo 71

where the so-called structure function S, (q) is given by

2" —1 2n—1

Su(g) =D _ [V ((k+1)27) = Y(k27")[9 = ) 27 (4.11)

and note that 7(¢) and S, (q) are related via the scaling relation
Sn(q) ~2 @, (4.12)

Collecting the terms £ in S,(¢) with af(¢) approximately equal to some
given value, say «, for varying o and noting that we have about 2"/(® such
terms yields

Sulg) = 37 3 27 0§ g nlea @) o gninfaleaf@), (413)

a ap™~a a

that is,
() = J*(0) = inf(ga — f(a)), (114)

where * denotes the Legendre transform of a function (for a mathematically
rigorous argument, see [73, 74]).

While the partition function 7(q) is clearly easier to estimate than f, note
however that f may contain more information than 7. In fact, the Legendre
back-transform yields only

fla) < f7(a) =1"(a) = i{qlf(qoz —7(q)) (4.15)

where f** is the concave hull of f. Conditions under which equality holds
in (4.15) are of particular interest and have been studied extensively. For
example, if the partition function 7(g) is everywhere differentiable, then
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using an application of the Ellis-Gértner theorem of LDP [20] (or similar
methods [73, 74]) the following explicit formula for the Legendre transform
can be obtained:

fla) =qa—7(q) at g such that a = 7'(q). (4.16)

A different case of interest in which we have the equality f(a) = 7*(a) con-
cerns the class of processes called multiplicative cascades and their variations
[62, 42, 11, 5, 22, 62, 36, 67, 75]. This mathematically well-studied class of
signals provides a powerful link between the coarse approximation of local
regularity provided by the rate function f(«), the global scaling captured
in the partition function 7(¢), and the pointwise Holder exponent «y: the
Hausdorff-dimension [24] of the set of time instances ¢ for which oy equals a
given value « is precisely equal to f(a) = 7*(«) for almost every path of the
process [42, 5, 22, 62, 36, 75] (see also [74] and [41, 21, 77, 73]). These results
constitute what is called the multifractal formalism. The term alludes to the
“thermodynamical formalism” and dates back to the discovery of multifrac-
tals in the context of turbulence [50, 29, 32, 35, 33, 10, 41, 21, 75, 77, 73]).
In view of this formalism, numerically established equality in (4.15) is gen-
erally taken as an indication of the presence of strong multiscale structure
in the signal and as justification for using f as an appropriate measure for
describing and capturing local irregularity. In particular, genuinely concave
behavior of 7(¢q) is viewed as empirical evidence that there is a whole in-
terval of a-values present in the signal and not just a few, hence the term
multifractal.

While in this section the time domain-based approach was used to discuss
most of the concepts related to MFA, we note that the basic conclusions
remain true if «(t) is replaced by @&(t) and (4.2) by (4.4); that is, the time
domain-based method involving the increments is replaced by the wavelet
domain-based technique that focuses on the signal’s wavelet coefficients; for
a more detailed description of the wavelet domain-based approach and its
properties, see for example [6, 30, 75, 2].

4.3 Multifractals and network traffic: Empirical observations

Taqqu, Teverovsky and Willinger [84] discuss the relevance of monofractals
and multifractals for describing LAN and WAN traffic. The first full-blown
multifractal analysis of measured aggregate TCP/IP WAN traffic traces,
however, is due to Riedi and Lévy Véhel [76]. Performing a MFA using the
time domain-based approach, they report on multifractal scaling in unprece-
dented high quality and over essentially the whole range of scales. In fact,
their plots of log S(n, ¢) against n (the logarithmic time scale) show nearly
perfect linear behavior, allowing for reliable estimates of the corresponding
slopes; i.e., the partition function 7(¢) defined by (4.10). In addition, the
log-normalized histograms of logarithmically spaced o, -values (see (4.2)
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above) collapse nicely for a set of large n-values and approach the Legendre
transform 7*(«) of 7(¢), suggesting an apparent scale-invariant behavior
of the measured traffic over small time scales. In view of the multifractal
formalism discusses earlier in this section, these observations suggest an
underlying 7(¢) function that is differentiable, adding additional regular-
ity to the scaling. Using the same methodology as employed by Riedi and
Lévy Véhel, Mannersalo and Norros [60] analyzed various short traces of
measured aggregate WAN ATM traffic and basically confirmed the results
reported in [76]. (ATM is a networking technology often used in IP networks
as a substrate for an IP-layer, i.e., internetworking layer, hop.)

From a networking perspective, the apparent insensitivity of Riedi and
Lévy Véhel’s techniques to aspects of the measured traffic that one en-
counters (e.g., the pronounced self-clocking behavior of TCP on the order
of RTT-sized time scales discussed in Section 4.1) is problematic. This in-
sensitivity casts doubts on the appropriateness of applying a time domain-
based technique when the traces tend to exhibit—in addition to possibly
multifractal scaling—relatively regular patterns when observed over RTT-
sized time scales. Clearly, such regular behavior can negatively affect any
sort of scaling investigations, either in the small or large scales. Alterna-
tive approaches to the time domain-based method introduced in [76] for
inferring multifractal scaling are needed—approaches that are capable of
relating network-specific features with dominant aspects of the resulting
trace analysis.

One such approach is wavelet domain-based, and exploits the fact that ir-
regular /regular patterns in a given signal can be well localized (in time and
space) and studied by considering the wavelet coefficients associated with
the signal’s wavelet decomposition. This wavelet-based approach to investi-
gating the possibility of multifractal scaling in network traffic was originally
proposed by Feldmann et al. [26, 27] in an effort to validate the findings re-
ported in [76] using different data sets as well as a different technique than
the unproven (in the network setting) time domain-based approach pur-
sued in [76]. Wavelets were first brought to the attention of the network-
ing community by Abry, Veitch and their co-workers, who demonstrated
the wavelets’ natural abilities for investigating scaling-related phenomena
in the context of analyzing, estimating, and synthesizing LRD processes
[1, 2, 3]. Influenced by the work of Arneodo and his collaborators [6, 7],
Feldmann et al. proposed in [26, 27] an application of wavelet-based tech-
niques for inferring scaling phenomena such as LRD and multifractal scaling
in a manner that is more qualitative in nature and focuses less on a quanti-
tative assessment of the scaling behaviors for which these techniques were
originally designed for. In [26] and, particularly, in [27], Feldmann et al.
demonstrate that one can associate known network-specific features with
qualitative characteristics (e.g., scaling regions, “breakpoints”, “spikes” or
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“dips”) in the output of the wavelet scaling analysis of the data. For ex-
ample, recalling the definition of a signal’s wavelet coefficients given earlier
in Section 4.2 (using, say, the Haar wavelet), it is easy to see that a rela-
tively regular pattern that is well localized in time and scale will give rise
to corresponding small wavelet coefficients; in contrast, well-localized ir-
regular patterns can be expected to yield large wavelet coefficients in the
corresponding time-scale or wavelet-domain “neighborhood” of the under-
lying signal. To illustrate, consider a sinusoidal signal and its corresponding
wavelet coefficients using Haar wavelets. Clearly, for suitably chosen scales,
the signal and the wavelets will “cancel” each other, resulting in wavelet
coefficients that are negligible.

The fact that it is possible to relate wavelet domain-based features to
network characteristics is very useful and promising. For example, Feld-
mann et al. [27] comment on (i) how RTT (the round-trip time) behav-
ior impacts both large-time and small-time scaling behavior, (ii) when a
small-time scaling analysis does and does not make sense, depending on
the conditions under which the measured data were collected, and (iii) un-
der what situations measured network traffic can be expected to conform
to multifractal-like scaling behavior over small-time scales. In short, the
findings in [27] suggest that highly accurate TCP traces (e.g., time stamp
accuracy in the microsecond range) collected, if possible, from networking
environments that favor large RT'Ts (e.g., on the order of a few hundreds of
milliseconds) are a prerequisite for performing any reasonable scaling-type
analysis over a sufficiently wide range of small time scales. Under current
networking conditions, the TCP layer appears to be the most promising
place within the layered networking hierarchy for trying to study the irreg-
ularities or regularities of network traffic and for attempting to relate them
to network-specific features.

5 Outlook—There is more to network traffic than
multifractals!

Starting with the discovery of self-similar scaling in measured traffic traces
from modern-day data networks, we have argued that to encounter truly
interesting and challenging problems related to the mathematical modeling
of empirically observed phenomena, it is necessary to move beyond the tra-
ditional descriptive or “model-fitting” stage and aim instead for physical
explanations of the phenomena that can be validated against actual data.
Despite progress in relating certain network-specific features to the output
of the wavelet domain-based scaling analysis, nothing close-to a physical
explanation of the observed small-time scale behavior (including multifrac-
tal scaling) exists to date. Yet, for any type of observed scaling behavior
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to have a genuine impact on networking, it is essential that their applica-
tions move beyond the traditional descriptive stage and yield answers as to
why network traffic exhibits a certain scaling property. Since the available
data provide detailed information about so many different facets of network
behavior, there exists great potential for coming up with intuitively appeal-
ing, conceptually simple and mathematically rigorous statements as to the
causes the various scaling phenomena that are observed in data networks,
on both small and large scales.

List of Abbreviations

ACK = acknowledgment packet

ATM = asynchronous transfer mode (sometimes used in high-speed wide-
area networks)

CWND = control window (used in TCP)

FBM = fractional Brownian motion

IP = Internet protocol

LAN = local area network (for example, in a building)
LDP = large deviation principle

LRD = long-range dependence

MFA = multifractal analysis

PSTN = public switched telephone network

QoS = quality of service

RTT = round trip time

SRD = short-range dependence

SSTHRESH = slow start threshold (used in TCP)
TCP = transmission control protocol

WAN = wide area network (for example, the Internet)
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