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Abstrakt 
Recent traffic measurements in corporate LANs, Variable-bit-rate video sources, 
ISDN control-channels and other communication systems, have indicated traffic 
behaviour of self-similar nature. This paper reviews and discusses briefly the 
known definitions and properties of second-order self-similar discrete-time 
processes and supplements them with some more general conditions of self-
similarity. A model for ATM cell traffic is presented and self-similarity conditions 
of this model are found.  
 
 

1. INTRODUCTION 
 Long-memory and self-similar processes have been studied since the middle of this 
century. They were discovered experimentally and introduced mathematically in a remarkably 
large number of fields, such as agronomy, astronomy, chemistry, economics, engineering, 
enviromental sciences, geosciences, hydrology, mathematics, physics, and statistics. Pioneering 
mathematical work on them was done by Kolmogorov [9] and Mandelbrot [14].  
 Recently, these processes were considered in modeling cell traffic in modern 
communications networks. In particular, second-order self-similar processes were used to model 
telecommunication traffic in high-resolution Ethernet local-area networks, wide-area networks 
and also for variable-bit-rate video traffic. This was motivated by experimentally observed long-
range dependence of traffic data and "burstiness" of traffic streams across an extremely wide 
range of time scales: traffic spikes riding on longer-term ripples, that in turn ere riding on still 
longer term swells, etc. [11], [12], [5], [16].  
 Inspite the growing interest in this new telecommunication subject, there are no books 
which consider in detail the second-order self-similar processes and explain their properties. A 
lean literature on this second-order topic is scattered over years, journals, and papers. Also, the 
main attention of even existing literature oriented to non-telecommunications applications is 
focused on the self-similar processes which are continuous both in values and in time (see the list 
of about 800 references in [1] and the list of 420 references in [22]) whereas cell and packet 
commutications networks demand traffic models which are discrete both in values and in time.  
 Additionally, there is some unpreparedness of second-order self-similar processes for 
immediate use. This is related to the fact that inspite the existence of concepts of exact and 



asymptotic second-order self-similarity, there are no commonly accepted unique definitions of 
such processes.  
 Leland et al. [11], [12] suggested the use of parsimonious models for self-similar traffic. 
Such models (for example, having just three parameters such as mean, variance, and the Hurst 
parameter) form a rather wide set. Generally speaking, more parsimonious models lead to more 
wide sets. The problem is to take from such a set a relatively narrow subset of models which are 
both mathematically tractable and physically reasonable.  
 The main object of the present paper is to review and discuss briefly the known definitions 
and properties of second-order self-similar discrete-time processes, to supplement them with some 
more general conditions of self-similarity, to present a model for ATM cell traffic, and, finally, to 
find the conditions of model self-similarity.  
 Section 2 contains definitions of exactly and asymptotically second-order self-similar 
processes, which we accept. The most essential second-order properties of these processes are 
presented. A novelty is in presentation of some unknown proofs and properties as well as in 
presentation of all these properties in one paper. A comparision of different definitions is done 
with discussion and comments.  
 Section 3 gives a model for ATM cell traffic, the necessary and sufficient conditions for its 
exact self-similarity and a sufficient condition for its asymptotical self-similarity. The conditions 
are more general than obtained earlier ; they contain the known conditions as special cases. We 
reference the previous papers which are particularly relevant to the model and also discuss some 
other known models linked to our model only objectivelly.  
 The proofs of our results are placed in Appendices A-D. In this presentation, we need to 
use the concepts of the Karamata slow- and regular-variation theory. The definitions of slowly 
and regularly varying functions and sequences are given in Appendix E. For other used facts of 
the theory, we refer to [2].  
 
2. SECOND-ORDER SELF-SIMILAR DISCRETE-TIME PROCESS 
 This Section contains the definitions of exactly and asymptotically second-order self-
similar processes. The class of exactly self-similar processes is too narrow for modeling a real 
network traffic. Usually, it is exploited for theoretical purposes. As to the class of asymptotically 
self-similar processes, it is broad enough for communication network applications.  
 The most important modern communications networks are discrete in nature since they 
use binary and byte signals and measures and frame, packet, and cell transmissions. Taking this 
into account, we focus in this paper on traffic models only discrete in values and in time. 
However, the definitions and considerations in Section 2 hold for continuous-value and discrete-
time processes as well.  
 For exactly self-similar process, some of its main properties are reviewed and commented. 
The definitions of exactly and strictly self-similar processes are compared. These considerations 
are known and can be found in [6], [9], [14] and [17] - [20].  
 For an asymptotically self-similar process, we give a necessary and sufficient condition of 
its self-similarity in terms of variance of its averaged version. Also, we give a new sufficient 
condition of self-similarity in terms of correlation coefficient  of the process itself.  
 We begin with the introduction of a semi-infinite segment of a second-order-stationary 
real-number stochastic process X = (X1 , X2 ,... )  of discrete argument (time) t ∈ I1 ˆ = {1,2, ...}. 

Denote 
µ = EXt < ∞

 and 
σ 2 = var Xt < ∞

, the mean and the variance of 
Xt  respectively. 

Denote 



r(k) =
E(X

t + k
− µ)( Xt − µ)

σ2
, k ∈I0 ={0,1,2,...},  

the correlation coefficient of process X  and denote by f(l) its spectral density. The mean µ , the 

variance σ 2
, and the correlation coefficient r(k)  do not depend on time t , and r(k) = r(−k) .  

 2. 1. Second-order exact self-similarity. The subsection opens with two definitions of 
exact second-order self-similarity. They are equivalent (see Theorem 1 below). The first 
definition, A, is more appropriate to use for proving the exact self-similarity of a specific process 
and, also, it is more convenient for generalization of exact self-similarity to asymptotical one. The 
second definition, B, is more suitable for understanding burstiness of self-similar processes and for 
justification of term self-similarity.  
 Definition A. A process X  is called exactly second-order self-similar (es-s) with 

parameter 
H =1−

β
2 , 0 < β < 1 if its correlation coefficient is  

r(k) = 1

2
[(k +1)2 − β − 2k2 − β + (k −1)2 − β] ˆ = g(k), k ∈I1 = {1,2,...}.    (2. 1) 

 
 The function g(k )  can be written as g(k ) = δ 2 (k 2− β )  in terms of the central second 

difference operator δ 2 ( f ( x))  applied to a function f (x ) = x2− β
. Note that 

δ ( f (x )) = f (x +
1
2

) − f (x −
1
2

) . In (2. 1) and in the sequel,the symbol ˆ =  means the equality 

by definition. 
 For the presentation of a second definition, we need to introduce the averaged (over blocks of 
length m) process X

(m )
,  

X (m ) = (X1

(m) , X2

(m ) , ...) ,  

 X t

(m ) = 1
m

( Xtm − m +1

(m) +. ..+X tm

(m ) ), m, t ∈ I1 ,  

 its correlation coefficient rm (k ) , and its variance Vm .  The averaged process X (m )
 , as well as 

the normalized process   
( 
X (m )

  which will come later, play an important role in getting an insight to 
self-similarity of process X.   
  
 Definition B. A process X  is called exactly second-order self-similar (es-s) with 

parameter 
H =1−

β
2 , 0 < β < 1  if  rm (k ) = r(k ), k ∈I 0 , m ∈I1.   

 
 Before commenting, we present the most essential properties of es-s processes. The 
properties are given by the following  
 Theorem 1. For a process X and  0 < β < 1, the following are equivalent: 
(a )  X is es-s in definition  A, i. e. r (k ) = g(k) ,  

(b )  Vm ˆ = var Xt
(m ) = σ 2 m−β , m ∈ I2 = {2,3,.. .},  



(c )  f (λ ) = c e2πiλ − 1
2 1

λ + l
3− β

l= − ∞

∞

∑ , −
1
2

≤ λ ≤
1
2

,  

( d ) X is es-s in definition  B, i. e. rm (k ) = r(k ), k ∈I 0 , m ∈I1.   
 
 
 Theorem 1 shows the equivalence of the above two definitions and that a process X with 
r (k ) = g(k)  does not change its second-order characteristics, correlation and spectrum shape, 
with averaging over blocks of any length m.. This is why X is called self-similar. (The claim that (a 
) follows from (d ) was published by Cox [6] but without proof,  therefore we prove it at the end 
of this subsection.) The significance of function g(k )  is in the fact that it gives a non-degenerate 
correlational structure of limiting averaged process.  

 Since g(k ) ~ 1
2(2 − β)(1− β)k − β = H(2H −1)k −β

, k → ∞ , the es-s process has a 

heavy-tailed and even unsummable autocovariance function and correlation 

coefficient, r(k)
k =0

∞

∑ = ∞ . (Here and below, f (x ) ~ h(x)  means [ f (x) / h(x)] → 1 as 

x → ∞ .  ) This relates the es-s processes with the long-range dependence (l-rd) processes. The 
last were defined ( see [1], [6] ) as processes which have r (k ) ~ ck − β , 0 < β < 1  , where c is a 
constant. Thus, we see that any es-s process is l-rd.  
 What is the rôle of parameter β ? First, β > 1 shows that X  is the short-range 

dependence (s-rd) process which has Vm ~ cm −1
 as m → ∞ , summable r (k ) , and uncorrelated 

X t

(m )
 as m → ∞  , whereas 0 < β < 1 shows that X  is lr-d process. Second, when 0 < β < 1, 

a value of β  shows a level of long-range dependency in X , a higher β  corresponds to higher 
dependency in X .   
 Along with second-order exactly self-similar processes, just self-similar processes,  which 
for greater terminological difference we call  strictly self-similar (ss-s) processes, are even more 
widely known . We recall their definition and then compare es-s and ss-s processes.  
 Definition. A strict-sense stationary process X = (X1 , X2 ,... )  is called strictly self-

similar (ss-s) with parameter 
H =1−

β
2 , 0 < β < 1 if m1−H X (m ) =

dis

X  (or, equivalently, 

  
( 
X (m ) =

dis

X ) where   
( 
X (m ) = (

( 
X 1

(m) ,
( 
X 2

(m ) , ...) , 
  

( 
X t

(m ) =
1

mH
(X tm −m +1 +...+ Xtm

) , and =
dis

 means 

equality in the sense of finite-dimentional distributions.  
 
 Our comparision of es-s and ss-s processes is expressed in terms of the following relations 
: 

[  rm (k ) = ( 
r m (k ) = r(k) ] ⇐  [  

( 
X (m ) =

dis

X ] ⇒[  var
( 
X t

(m ) = σ 2 ˆ = var Xt ],  (2. 2) 
 

[  rm (k ) = ( r m (k ) = r(k) ]⇐[  var
( 
X t

(m ) = σ 2
] ⇔ [r (k ) = g(k) ]⇔ [var Xt

(m ) = σ 2 m−β
](2. 3) 



where    
( r m (k )   is the correlation coefficient  of the normalized process    

( 
X (m )

  and the relations 
(2.2) and (2. 3) are valid for all k, m ∈I1. (We note that the case m = 1 is trivial and the case 
k = 0  is not covered since   rm (0) = ( r m (0) = r (0) = 1 and g(0)  is not determined.) 
 These relations show that any ss-s process has r (k ) = g(k) .  It means in particular that if 
X is ss-s, then it is es-s. The opposite statement is not true, i. e. "X is es-s" does not imply "X is ss-
s". However if X is Gaussian es-s with EXt = 0 , then it is ss-s. Also, they prove the following 
implications for the Gaussian process X with EXt = 0 : 
[X   is zero-mean Gaussian and ss-s]⇒                 (2. 4)                                         

⇒{[  rm
(k ) = ( r 

m
(k ) = r(k) = g(k) ],[  var

( 
X t

(m ) = σ 2
],[var Xt

(m ) = σ 2 m−β
]},                    

[X is zero-mean Gaussian and r (k ) = g(k)  ]⇒        (2. 5)   

⇒{[], [  rm
(k ) = ( r 

m
(k ) = r(k) = g(k) ], [  var

( 
X t

(m ) = σ 2
], [var Xt

(m ) = σ 2 m−β
]},  

 

[X is zero-mean Gaussian and   var
( 
X t

(m ) = σ 2
 (or equivalently, var Xt

(m ) = σ 2 m−β
)]⇒    

⇒{[  
( 
X (m ) =

dis

X ], [  rm (k ) = ( 
r m (k ) = r(k) = g(k) ]},       (2. 6) 

 

[X is zero-mean Gaussian and   
( r 

m
(k ) = r(k )  ]⇒[  

( 
X (m ) =

dis

X ]⇒       (2. 7)  

⇒{ [  rm (k ) = ( r m (k ) = r(k) = g(k) ], [  var
( 
X t

(m ) = σ 2
 ], [var Xt

(m ) = σ 2 m−β
]} 

 
where k, m ∈I1.  
 The implications (2. 4) - (2. 7) show the equvalence of the following assertions: [ Zero-

mean Gaussian X is ss-s ], [  rm (k ) = ( r m (k ) = r(k) ], [  var
( 
X t

(m ) = σ 2
], and [r (k ) = g(k) ].   

 Also, it follows that a solution r (k ) = g(k)  to the functional equation 
r

m
(k ) = r(k ), k,m ∈I1 is unique in the class of correlation coefficients r (k ) ,i.e. in the class 

of non-negative definite functions.  Since a proof of this claim which also was included in 
Theorem 1 was not published, we prove it here. Namely, (2. 4) and (2. 5) give that a zero-mean 
Gaussian X is ss-s iff r (k ) = g(k) ,k ∈ I1. Since   rm (k ) = ( 

r m (k ), k,m ∈I1, (2. 7) gives that if 
a zero-mean Gaussian process X has rm (k ) = r(k ), k,m ∈I1, it is ss-s. From these two 
sentences, we get directly the uniqueness of the solution r (k ) = g(k)  to the equation 
rm (k ) = r(k ), k,m ∈I1.   
 A ss-s process can not have a non-zero mean , whereas an es-s process is allowed to have 
such a mean since the restriction is imposed only on its correlation coefficient or autocovariance 
function. Moreover, if X is a positive and non-degenerated process, neither X nor X -m  can be 
ss-s.  
 
 2. 2. Second-order asymptotical self-similarity. There are different definitions of 
asymptotical self-similarity. We bring that which we accept for this paper and also we mention 
and comment on other definitions. Here we use the same notations as above.  
 Definition. A process X  is called asymptotically second-order self-similar (as-s) with 

parameter 
H =1−

β
2 , 0 < β < 1 if  



lim
m→ ∞

rm (k) = g(k ), k ∈I1 .            (2. 8) 

 
 Thus, X is as-s if after averaging over blocks of length m and with m → ∞ , its correlational 
structure becomes identical to that of es-s process (not to that of X itself (! ) as in the different 
definitions [X is as-s if r (k ) → L(k)k − β , k → ∞  and rm (k ) → r(k), m → ∞ , for large 

enough k where L(k) is a slowly varying function] accepted in [12] and [X is as-s if 
rm (k ) → r(k), m → ∞ , k ∈ I1  ] accepted in [19]). In other words, if X (m )

 goes to be es-s as 

m → ∞ , then X is as-s. The presented definition is due to Cox [6]. The as-s processes in 
definitions of [12] and [19] are discussed at the end of this subsection.  
 Evidently, an es-s process is as-s.  
 The following theorem gives a necessary and sufficient condition of as-s for X to be as-s in terms 
of variance, Vm , of averaged process X (m )

 and also, gives a sufficient condition in terms of 

correlation coefficient, r (k ) , of process X itself.. The theorem uses the concept of slow and 

regular variation (see Appendix E).  

 Theorem 2. For a process X and 
H =1−

β
2 , 0 < β < 1, the following are equivalent: 

(e ) X is as-s, i. e. (2. 8),  

(f )  
Vkm

V
m

~ k− β
,  integer m → ∞ , k ∈ I1 .  

The asymptotical equations 
(g ) Vm ~ L(m)m −β , m → ∞, m ∈ I1  
and 
(h ) r (k ) ~ σ 2 H(2 H −1)L(k )k −β , k → ∞, k ∈I1 
(where L(x) > 0  in (g ) is a slowly varying function (svf) and L(x )  in (h ) is the same as in (g ) ) 
are equivalent and each implies (e ) and (f ).  
 Proof is given in Appendix A. ∴ 
 The asymptotical equation (f ) is just a definition of the index (−β)  regularly varying sequence 

(rvs) Vm  with integer variable (see Appendix E). Thus, Theorem 2 states that the asymptotical 

self-similarity of X is equivalent to the regular variation of variance of X (m )
.   

 We stress that rvs with integer variable does not necessary behave as a rvs with 
continuous variable.  
 Each of the conditions (g ) and (h ) is sufficient for X to be as-s. They contain a slowly 
varying function (svf) used at positive integer points m.  The condition (g ) requires the variance 
Vm  to be regarded as a rvf .  Similarly, (h ) requires the same from the correlation coefficient 
r (k ) .  
 The condition (h ) is sometimes more convenient then (f ) and (g ) since (f ) and (g ) are 
expressed via the characteristics of the average process, X (m )

, whereas (h ) is expressed via the 
correlation coefficient of process X itself. This condition (h ) is more general than the sufficient 
condition of asymptotical self-similarity, r (k ) ~ ck − β , k → ∞ , c = const , given in [20].  
 According to (h ), each l-rd process in definitions of [1], [6] is as-s.  



 At the end, we remind that there exists a concept of strictly asymptotically self-similar   

(sas-s)  process. A process X is sas-s if   
( 
X (m ) =

dis

X  holds as m → ∞ . A sas-s process is not as-s 
in definition (2. 8) but it is as-s in definition given in [12] and [19]. If a different definition of sas-s 

process is accepted, namely, "X is sas-s if   
( 
X (m )

 is ss-s as m → ∞", then we get the opposite, 
namely, that a sas-s process is as-s in definition (2. 8) but not as-s in definition given in [12] and 
[19].  
 Now, we note that the set of correlation coefficients r (k )  for which as-s process in 
definition of [12] exist, contains only one function r (k ) = g(k) . It is so since if 

r (k ) → L(k)k − β
 then rm (k ) → g(k )  according to Theorem 2. Thus, the class of as-s 

processes in  definition of [12] coincide with the class of es-s processes.  
 Also, it is easy to note that the intersection of the class of as-s processes in definition of 
[19] and the class of as-s processes in the Cox definition accepted here contains only one process, 
namely, es-s process. Thus, the l-rd processes satisfying (h ) except es-s process are not in the 
class of as-s processes in definition of [19]. In return, the second-order pure noise ( 
r (k ) = 0, k ∈ I1 ) being the limit of averaged short-range dependence processes with 
Vm ~ cm −1, m → ∞  is as-s in definition of [19] but not as-s in the Cox definition.  
 
3. TRAFFIC MODEL AND CONDITIONS OF ITS SELF-SIMILARITY 
 In this section, a model of cell traffic Y  is described. The model was suggested in [21], 
the special cases of it were presented in [7], [10], [13] and [20]. We give the conditions for exact 
and for asymptotic self-similarity of the traffic Y . The analogous conditions in [7], [13], [20], and 
[21] are less general and less explicit than presented here. At the end, other known models of self-
similar traffic are reviewed.  
 3. 1. Cell traffic model. A considered traffic Y  is assumed to be a stream of cells. The 
cells have an equal length taken here as a time unit. The cells are assigned to sources so the traffic 
is an aggregation of cells generated by sources. To present a precise traffic structure, we begin 
with the source model.  
 The sources are numbered by s. A source s starts to generate cells at time denoted by ω s  
(the source numbering is ordered such that ω s ≤ ω s+1 ). The moment ω s  is called the arrival 
epoch of source s . The source s  generates θs (i) ∈I0  cells at time ω s + i −1 in time interval 
ω s ,...,ω s + τs −1. The sequence (θs (1),...,θ s (τ s ))  is called the active period of source s  
andτ s  is called the lengh of the source active period. Before time ω s  and after time 
ω s + τ s − 1 , the source s  does not generate any cells, θs (i) = 0  for i < ω s  and for 

i ≥ ω s + τ s .  Thus, θs (t − ω s +1) , t ∈ I1  is the sequence of numbers of cells generated by 
source s  at successive time moments.  
 The special cases of active period can be, for example,  

∗   A constant θs(i) = R ∈ I1,1 ≤ i ≤ τs ,  
∗   A random constant θs(i) = R  with the constant R  depending on τs , i. e. R = R(τs ) ,  
∗   The i. i. d. θs(i)  taking on values 0 and 1 with probabilities p0  and p1  respectively,  
∗   The i. i. d. θs(i)  taking on values from {0,1,. ..,k} with binomial distribution or from I0  
 with geometrical, Poissonian or some given distribution,  
∗   Any Markov, semi-Markov or other well known sequences of θs(i) .   



 A time t  can be an arrival epoch for several sources. Let ξ t  be the number of sources 
with arrival epochs being equal to t .  
 The considered traffic Y = (...,Y−1 ,Y0 ,Y1 , ... ) is an aggregation of cells generated by 
different sources,  
Yt = θ s (t − ω s + 1)

s
∑ , t ∈I− ∞ = {... ,−1,0,1,...} .      (3. 1) 

It means that Yt  is the total number of cells generated by all active sources at time t .  
 It is assumed that  
(10

) The active periods (θs (1),...,θ s (τ s ))  are i. i. d. for different s , in other words, 

(τ s ,(θ s (1), ...,θs (τ s )))  are i. i. d. for different s . An active period (θs (1),...,θ s (τ s )) , 
conditional on τ s = l , is a segment of a second-order-stationary non-negative integer stochastic 
process generally depended on l .  
(20

) The numbers of source arrivals, ξ t , t ∈I −∞ , are independent and they are identically Poisson 

distributed Pr{ξ t = k} = e −λ λ k

k!
 where 0 < λ < ∞  is the parameter of the Poisson distribution, 

λ = Eξ t .  

(30
) The active periods (θs (1),...,θ s (τ s )) [or (τ s ,(θ s (1), ...,θs (τ s ))) ] are mutually 

independent of numbers ξ t  and epochs ω s . The numbers ξ t  are mutually independent of epochs 
ω s .  
 This concludes the specification of cell traffic model Y  which we consider. In [21], a 
special case of this model is considered, in which (θs (1),...,θ s (τ s )) , conditional on τ s = l  
with different s , are the segments of a second-order-stationary non-negative integer stochastic 
process independent of l . (We mean the model Y

( 4)
 in [21]. By reason of this independence on l , 

the model Y ( 4)
 in [21] is not able to cover the modes Y (2 )

 and Y (3)
 there as special cases.) A 

special case of the model, namely, θs
(i) = 1 for all i  inside of active period and for all s , was 

considered earlier in [7], [10], [13], and [20].  
 Y = (...,Y−1 ,Y0 ,Y1 , ... ) can be interpreted as the random point marked process of 
discrete time, for which the points are s [or ω s ] and the mark of point s  is 
(τ s ,(θ s (1), ...,θs (τ s )))  or (θs (1),...,θ s (τ s )) .  
 With the Poisson process splitting argument, the process Y  can be splitted into an infinite 
number of independent processes Y(l), l ∈ I1 . An individual process Y(l)  has the same structure 
as process Y  but with given active-period length τ s = l  for all its sources and with the number of 

sources arrived at t  equal to ξ t ,l , the Poisson random variable with parameter 

λ l = Eξ t,l = λ Pr{τ = l} where τ  is the generic symbol for τ s  in process Y . This means 

Y = Y(l)
l =1

∞

∑ , ξ t = ξ t,l
l =1

∞

∑ , λ l
l =1

∞

∑ = λ         (3. 2) 

where ξ t ,l  are independent for different (t ,l) .   

 It is easy to imagine the splitting as following. Upon its arrival, each source is sent to 
process Y(l)  with probability Pr{τs = l} independently of each other source and independently 
of the arrival epochs. If a source s  is sent to Y(l) , it gets τ s = l  and has the taken-from-



process- Y  conditional-on- τ s = l  distribution of (θs (1),...,θ s (τ s ))  as unconditional 
distribution of its active period in process Y(l) .   
 In the next subsection, we use the splitting of process Y  to obtain the conditions of its 
self-similarity.  
 

 3. 2. Conditions for self-similarity of traffic Y.  Our aim here is to get the conditions 
under which the introduced in  3. 1 cell traffic Y  is self-similar. Since second-order self-similarity 
is defined in terms of correlation coefficient, we first need to find the expressions for mean and 
autocovariance function of process Y  and then, with an expression for r (k ) , to find the desired 
conditions of exact and asymptotic self-similarity of Y . The conditions for special cases of Y  
found in previous papers can be deduced easily from the conditions given here.  
 Consider a process Y . Consider its generic source active period (θ (1), ...,θ (τ )) , 
conditional on τ = l . It is a segment of second-order-stationary discrete-time process denoted 
here as θ (t) = (...,θ (−1),θ (0),θ (1),... ) . The probabilistic characteristics of θ (t)  depend on 
l . Denote µ (l ) ˆ = Eθ (t) , the mean, and B(l) (k ) ˆ = Eθ( t)θ (t + k ) , k ∈ I−∞ , the 

autocorrelation function of process θ (t) . We assume that 0 < µ ( l ) < ∞  and 0 < B( l) (k) < ∞  
to avoid singularities.  
 Theorem 3. The mean and autocovariance  function of process Y  are 

EYt = λ l Pr{τ = l}µ (l )

l=1

∞

∑ ,         (3. 3) 

w(k) ˆ = cov{Yt
,Yt +k

} = λ (l − k )Pr{τ = l}B( l ) (k ), k ∈I0
l =k+1

∞

∑ .    (3. 4) 

 Proof is given in Appendix B. ∴ 
 There is a useful corollary of Theorem 3, which gives Pr{τ ≥ l} in terms of λ , w(k)  
and B(l ) (k )  in the case when B(l ) (k )  does not depend on l .  
 Corollary. If B(l ) (k ) = B(k) , where B(k )  does not depend on l , then  

Pr{τ ≥ k + 1} =
w(k )

λB(k)
−

w(k + 1)
λB(k +1)

.  

  
 Theorem 3 and its corollary were proved in [20] and [21] in special cases of 
autocorrelation function B(l ) (k ) .   
 The next theorem gives the conditions which are necessary and sufficient for exact self-
similarity of process Y . They are expressed in terms of active-period length distribution, 

Pr{τ = l}, mean, µ ( l )
, and autocorrelation function, B(l) (k ) , of process θ (t)  dependent on l .  

 Theorem 4.  (1) The process Y  is es-s with H = 1 −
β
2

, 0 < β < 1 if and only if 

Pr{τ = l}, µ ( l )
 and B(l) (k )  are such that 

(l − k) Pr{τ = l}B( l ) (k)
l = k+1

∞

∑

l Pr{τ = l}B( l ) (0)
l =1

∞

∑
= 1

2
δ 2 (k 2− β ), k ∈ I1 ,      (3. 5) 



l Pr{τ = l}µ ( l)

l =1

∞

∑ < ∞ .          (3. 6) 

   (2)The process Y  with B(l) (k ) = B(l )
 (where B(l) does not depend on k ) 

is es-s with H = 1 −
β
2

, 0 < β < 1 if and only if Pr{τ = l}, µ ( l )
 and B(l)  are such that 

Pr{τ = k}B(k )

Pr{τ = l}B(l)

l =1

∞

∑
= v(k ) ,          (3. 7) 

kv(k)
µ (k )

B(k )
k =1

∞

∑ < ∞           (3. 8) 

where 

v(1) ˆ = 
32−β − 2 4− β + 7

4 − 22− β
, v(k ) ˆ = 

δ 4 (k 2− β )
4 − 2 2−β

, k ∈I2      (3. 9) 

and δ 4 ( f )  denotes the central fourth difference operator applied to a function f ,  

δ 4 (k2 −β ) = (k + 2) 2−β − 4(k +1)2− β + 6k 2− β − 4(k − 1) 2−β + (k − 2) 2−β
, k ∈ I2 .  (3. 10) 

    (3) The process Y  with µ (l ) = µ , B(l) (k ) = B(k)  (where µ  is a 

constant and B(k )  does not depend on l  ) is es-s with H = 1 −
β
2

, 0 < β < 1 if and only if 

Pr{τ = l} and B(k )  are such that  

Pr{τ = 1} =

32−β − 2 3−β + 1

B(2)
+

4 − 2 3−β

B(1)
+

2

B(0)
2 − 22− β

B(1)
+

2
B(0)

,      (3. 11) 

Pr{τ = k} =
δ 2 δ 2 (k 2−β )

B(k )

 
 
 

 
 
 

2 − 22 −β

B(1)
+

2
B(0)

, k ∈ I2        (3. 12) 

where 

δ 2 δ 2 (k 2−β )
B(k)

 
 
 

 
 
 =

(k + 2) 2−β − 2(k +1)2− β + k2 −β

B(k + 1)
− 2

(k + 1)2−β − 2k 2−β + (k − 1) 2−β

B(k)
+  

+ k 2− β − 2(k −1)2 −β + (k − 2)2 −β

B(k − 1)
,  k ∈ I2 .       

The  distribution  (3. 11)-(3. 12) has the finite mean  

Eτ = 1 + (1 − 21−β )
B(0)
B(1)

 
  

 
  

−1

.         (3. 13) 



    (4) The process Y  with µ (l ) = µ , B(l) (k ) = B (where µ and B  are 

some constants) is es-s with H = 1 −
β
2

, 0 < β < 1 if and only if Pr{τ = l} is such that 

Pr{τ = k} = v(k ), k ∈I1         (3. 14) 
where v(k )  is defined by (3. 9). The distribution (3. 14) has the finite mean 

Eτ =
1

2 − 21−β .           (3. 15) 

 Proof is given in Appendix C. ∴ 
 Note that the conditions of exact self-similarity in claims (1)-(3) of Theorem 4 are the 
functional equations, whereas the condition (3. 28) in claim (4) is an explicit expression for the 
distribution of active-period length τ .  
 The distribution (3. 9) is a decreasing function of k ∈ I1. Asymptotically, v(k )  decays as 

 v(k ) ~
(β + 1)β(β − 1)(β − 2)

4 − 22−β
k −(β + 2)

,   0 < β < 1, k → ∞ .   (3. 16) 

The distribution v(k )  is heavy-tailed. It has a finite mean but infinite variance. Numerically, v(k )  
is illustrated by Tables 1 and 2.  
 
Table 1. v(k )  for β = 0.6 .  
 
 k   1    5   10  15   20 
v(k) 0. 8078E+00 0. 6428E-02 0. 1000E-02 0. 3503E-03 0. 1513E-03 
 
Table 2. v(k )  for β = 0.2 .  
 
 k   1    5   10  15   20 
v(k) 0. 5713E+00 0. 2028E-01 0. 4243E-02 0. 1444E-02 0. 1414E-02 
 
 In the less explicit form for v(k ) , the functional equation (3. 7) was obtained by Cox [6] 
in case B(l ) = 1 ; also it was given in [20] for B(l ) = B ∈I1  and in [21] for monotonic B(l )

 with 
values in I1 .  
 Finally, we present the sufficient conditions of asymptotical self-similarity of process Y . 
Given the previous results on as-s, one would hypothesize that Pr{τ = l} has to have a heavy-tail 
to provide as-s to Y . This hypothesis is not correct. It is enough to require a heavy-tailed decay 
of the product Pr{τ = l}B(l ) (l)  to assure as-s for Y .  This is a claim of the following 

 Theorem 5. The process Y  is as-s with H = 1 −
β
2

, 0 < β < 1 if  Pr{τ = l}, µ ( l )
 

and B(l) (k )  are such that 

Pr{τ = l}B( l ) (l) ~ L(l)l − (β + 2) , l → ∞ ,       (3. 17) 

Pr{τ = l}B(l ) (0)
l =1

∞

∑ < ∞ , l Pr{τ = l}µ ( l )

l =1

∞

∑ < ∞      (3. 18) 

where L(x )  is a slowly varying function.  
 Proof is given in Appendix D. ∴  



 Subject to some minor restrictions (3. 18), the theorem states in fact that, if the product 
Pr{τ = l}B(l ) (l)  is an index −(β +2)  rvf, then the process Y  is as-s.  
 We feel that the sufficient conditions (3. 17)-(3. 18) are maybe necessary or quite near to 
them but what is true is still a question.  
 The condition of as-s, which is more restrictive than (3. 17) (with L(x ) = const  ), was 
known before. It was obtained by Cox[6] in special case B(l ) = 1 ; also, it is in [13] for 
B(l ) = B ∈I1  and in [20] and [21] for less general traffic models.  
 Let us consider the traffic examples for which (3. 17) satisfies.  
 Example 1. Let Pr{τ = l} be a Pareto-type distribution (it is heavy-tailed one),  

Pr{τ = l} ~ c0l
− α−1 , 1 < α < 2, l → ∞ ,  

where c0  is a constant or let it be such that 

Pr{τ = l} ~ L(l)l −α −1, 1 < α < 2, l → ∞ ,  

then Y  is as-s with H = (3 − α ) / 2 if µ (l ) = const  and B(l ) (k ) = B = const . ∴ 
 Example 2. Let Pr{τ = l} be negative exponential ("light-tailed"),  
Pr{τ = l} ~ c0e

− ϕl , l → ∞  

where ϕ > 0 is a constant, then Y  is as-s with H = 1 −
β
2

 if µ (l ) = const  and 

B(l ) (l) = B(l ) ~ L(l)l− (β +2)eϕ l, 0 < β < 1, l → ∞ . ∴  
 However, it is easy to see that if Pr{τ = l} = 0, l > l0  for some finite l0 , then Y  can not 
be as-s.   

 3. 3. Other known models. In presentation of self-similar traffic above, we referenced the 
papers which were particularly relevant to our model. There are also other mathematical models 
of self-similar traffic in communication networks. An extensive bibliographical guide with 420 
references to self-similar traffic modeling for modern high-speed networks is given in [22]. Not 
pretending on any full survey, we would like to briefly mention some important self-similar 
models which although are in a distance from our model, nevertheless have a certain conceptual 
relation with it.  
 All observed models below have continuous time. They use the term "source" for a 
different mathematical object than it is in our model above. There, a source is an on/off sequence. 
The source j has mutually independent alternating silence periods of i. i. d. lengths Sij  (with S j  or 

S  as generic) and active periods of i. i. d. lengths Aij  (with A j  or A  as generic), i ∈I1 .  

 Boxma [3], [4] considers a traffic which is a superposition of N  sources. A source j 
constantly transmits at rate Rj > 1 when active, contributing Rj Aij  volume to the traffic during its 

i -th active period. Several special cases are considered, namely, [ N = 1, distribution of A  is rvf, 
distribution of S  is arbitrary], [ N  is any given, distribution of A1  is rvf, all A j , 2 ≤ j ≤ N  are i. 

i. d. with negative exponential (nex) distribution or with exponential-tail distribution, distributions 
of all S j  are nex], and [ N = ∞ , all A j  are i. i. d. with rvf distribution, all S j  are i. i. d. with nex 

distribution]. The papers do not give any results on self-similarity of considered traffics. For a 
queue fed by each of these traffics, they present the steady-state distribution of infinite-buffer 
content at some specific time moments.  
 The models considered in these two papers and the approach used in getting buffer 
content results have a close conceptual similarity to those which are in [13] and [21]. Namely, in 
[13],  a discrete-time analog of the traffic is considered , which is the superposition of N  i. i. d. 



sources. It is proved that if N → ∞ , N / (EA + ES) = const , Pr{S ≤ t}→ 0  for any t < ∞ , 
and the distribution of A  does not depend on N  and is rvf, then the traffic is as-s. Also, for a 
queue fed by this limitting traffic, the steady-state infinite-buffer content distribution (precisely, its 
moment generating function) at some specific time moments is found.  
 Previously, an on/off (or "packet train") source model was proposed by Jain and Routhier 
[8] for LAN traffic modeling. Willinger, Taqqu, Sherman, and Wilson [23] remedied some of the 
shortcomings of the packet train model and focused their attention on conditions of self-similarity 
of superposition of on/off sources. Considering index −αA  and index −αS  rvf distributions for 
A  and S , respectivelly, 1 < αA < 2, 1 < αS < 2, α = min(α A, α S ) , and assuming that these 
distributions have probability densities or they are non-arithmetic, they prove that the N -source 
superposition reduced to zero-mean and integrated from 0 to Tt  tends (in the sense of the finite-
dimentional distributions) to the fractal Brownian motion (fBm) scaled by a factor T HN 1

2 L1
2 (T)  

as first N → ∞  and then T → ∞ , where H = (3 − α ) / 2 and L(T)  is svf related to the 
distributions of A  and S .  
 The (Gaussian) fBm process is considered by Norros [15] as a model for ATM traffic.  
 These models are far not the same as our model given in 3. 1 but all models are motivated 
by the same traffic measurements in high-speed communication networks, which are referenced in 
the Introduction section of the present paper.  
 
4. CONCLUSIONS 
 The different known definitions of exactly and asymptotically second-order self-similar 
processes were reviewed. A comparision of these definitions was done with discussion and 
comments. We presented the most essential second-order properties of self-similar processes in 
the Cox definitions accepted here. Some of our proofs and the presented properties are new.  
 We then gave a model for ATM cell traffic and the necessary and sufficient conditions for 
its exact self-similarity and a sufficient condition for its asymptotical self-similarity. The conditions 
are more general than obtained erlier; they contain the known conditions as special cases. The 
previous papers which are particular relevant to the model were referenced and the conceptual 
relations between models were briefly discussed.  
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APPENDIX A: PROOF OF THEOREM 2 
 Proof of Theorem 2. We start with a proof that (e ) implies (f ). The proof is based on the 
known equation [24],  



 rm
(k ) =

1
2V

m

[(k +1)2 V(k +1)m − 2k2Vkm + (k −1)2 V(k −1)m
] ≡

1
2V

m

δ2 (k2Vkm
), k, m ∈I1 .  

           (A. 1) 

 Using (2. 8) and (A. 1) both for k = 1, we get (
2V2m

V
m

−1) → (22 −β − 1) , integer 

m → ∞  that gives (f ) for k = 1.  Again using (2. 8) and (A. 1) both for k =2 this time, we get  

 
1
2

32 V3m

V
m

− 23 V2m

V
m

+
V m

V
m

 

 
 

 

 
 →

1
2

[32− β − 2 3− β +1] that gives (f ) for k =2.  

 For k >2, (f ) can be proved easy by induction.  
 That (f ) implies (e ), follows directly from (f ) and (A. 1).  
 Next, we show that (g ) implies (f ). It is evident since Vm  satisfying (g ) is rvs with 
continuous variable and can be regarded as rvf .  
 Now, we prove that (g ) implies (h ). Taking (A. 1) for m = 1, we get  

r (k ) =
1

2σ 2
[(k + 1) 2 V k +1 − 2k 2Vk + (k − 1)2 V k −1 ] ~   

~
1

2σ 2
[(k +1)2− β L(k + 1) − 2k 2−β L(k ) + (k −1)2 −β L(k − 1)] ~  

~ σ −2 L(k)g(k ) ~ σ −2 H(2H −1)L(k)k− β , k → ∞  
where the equation L(k +1) / L(k ) → 1, k → ∞   was used , which holds for a svf (but does 
not for a svs with integer variable!).  
 At last, we prove that (h ) implies (g ). We start with the equation [24],  

Vm = σ 2 m−1 + 2σ 2 m−2 (m − i)r (i), m ∈I1
i =1

m

∑      (A. 2) 

 According to (h ), r (k )  can be extended on a continuous neibourhood of infinity, 

[a,∞), a ≥ 1, as −β  rvf, i. e. r (x) ~ L(x)x− β
, where L(x )  is locally bounded in [a,∞) . 

(For the definitions and properties of ρ  rvf and locally bounded function, see [2].) Here and 
below, we assume that a  is an integer.  
 We need the following  
 Lemma A. 1. If f (x ) is a ρ  rvf, then 

f (i) ~ f (x )dx
a

n

∫
i = a

n

∑ , n → ∞ .         (A. 3) 

 Proof. Denote ai
ˆ = f (i) , bi ˆ = f (x)dx

i

i +1

∫ . Note that ai
~ a

i+1 , i → ∞ (Lemma 1. 9. 6 

in [2]) and f (x)dx = bi
i =a

n−1

∑
a

n

∫ .  

 Now, let us show that ai ~ bi , i → ∞ . We use the inequalities m i ≤ bi ≤ Mi  where for 
ρ > 0 , m i = inf( f ( x):i ≤ x) , Mi = sup( f (x ): x ≤ i + 1)  and for ρ < 0 , 
m i = inf( f ( x): x ≤ i +1) , Mi = sup( f (x ): x ≥ i) . By the Karamata theorem (Theorem 1. 5. 
3 in [2]), m i ~ ai  and Mi ~ ai +1, i → ∞ . It means ai ~ bi , i → ∞ .  



 To conclude Lemma proof, we need only to use the following two Lemmas A. 2 and A. 3 
without additional comments. ∴ 
 Lemma A. 2. Let ai > 0  and let ai

~ a
i+1 , i → ∞ . Then 

ai
i = a

n−1

∑ ~ ai
i =a

n

∑ , n → ∞  or an [ ai
i =a

n

∑ ]−1 → 0, n → ∞ .  

 Proof. For any ε > 0 , we choose 0 < δ < 1 and N1  such that 

(1 + δ + δ 2 +...+δ N1 −1 ) −1 < ε . Since ai / ai +1 → 1,  i → ∞ , we can choose N2  such that for 

i > N2 , ai
/ ai +1 > δ . Then for n > N1 + N2 + a,  

an [ ai
i =a

n

∑ ]−1 < an [ ai
i= a

n− N1

∑ + an (1 + δ +...+δ N1 −1 )]−1 < (1 + δ +...+δ N1 −1 ) −1 < ε . ∴ 

 Lemma A. 3. Let ai > 0  and let ai ~ bi , i → ∞  and ai
i = a

n

∑ → ∞, n → ∞ . Then 

ai
i = a

n

∑ ~ bi
i =a

n

∑ , n → ∞ .  

 Proof. For any ε > 0 , we choose N1 > a  such that bi − ai <
ε
2

a i
, i > N1  (we can do 

it since (bi − ai )ai

−1 → 0  when bi / ai → 1, i → ∞ ). Then we choose N2  such that for 

n > N2 + a , (bi − ai
)

i = a

N1

∑ / a i
i= a

n

∑ <
ε
2

 (we can do it since ai
i = a

n

∑ → ∞, n → ∞). For 

n > N2 + a , we have 

[ bi
i= a

n

∑ − ai
i = a

n

∑ ] / ai
i =a

n

∑ ≤ [ (bi − ai
)

i = a

N1

∑ ] / ai
i = a

n

∑ + [ bi − ai
i = N1 +1

n

∑ ] / ai
i =a

n

∑ ≤

ε
2

+
ε
2

[ ai
i = N1 +1

n

∑ ] / ai
i= a

n

∑ < ε . ∴ 

 Now, we continue to prove Theorem 2. At first, we note that since for any finite integer 

a > 0 , (h ) and r (i) ≤ 1 give r(i)
i =1

a−1

∑ < a  and r(m)
i = a

m

∑ → ∞, m → ∞ , we have  

r(i)
i =1

m

∑ ~ r(i)
i =a

m

∑ , m → ∞ .         (A. 4) 

 Similarly,  

ir(i)
i =1

m

∑ ~ ir(i)
i = a

m

∑ , m → ∞ .           (A. 5) 

 Then, denoting c ˆ = σ −2 H (2H − 1)  and applying Lemma A. 1 to −β  rvf r (x) , we get 

r(i)
i = a

m

∑ ~ c L(x)x −β

a

m

∫ dx ~
cL(m)m−β +1

1 − β
, m → ∞      (A. 6) 

where we used the Karamata equation (Proposition 1. 5. 8 in [2]),  

L(x )x u

a

m

∫ dx ~ L(m) xu dx
a

m

∫ , m → ∞ .  

 Similarly,  



ir(i)
i = a

m

∑ ~
cL(m)m−β + 2

2 − β
, m → ∞ .        (A. 7) 

 The equations (A. 4) - (A. 7) gives  

(m − i)r(i)
i = a

m

∑ ~
1
2

σ −2 L(m)m− β +2 , m → ∞ .       (A. 8) 

 Finally, from (A. 2) and (A. 8), we get 

 Vm ~ σ 2m −1 + L(m)m−β ~ L(m)m−β . ∴      
 
 
APPENDIX B: PROOF OF THEOREM 3 
 Proof of Theorem 3. Consider a process Y(l) . Its sources have the deterministic active-
period length l . A number of source epochs equaled t  is denoted in 3. 1 by ξ t ,l . They are i. i. d. 

and Poissonian with parameter λ l .  
 For Y , let Ω(i ,t , l)  be the number of cells generated at t  by the sources arrived at i  
with active-period length l , t − l + 1 ≤ i ≤ t . In other words, Ω(i ,t , l)  is the number of cells 
generated at t  by the sources arrived at i in process Y(l) . By θ (u, i, t − i +1, l)  denote the 
contribution (i. e. the number of cells generated at t  ) to Ω(i ,t , l)  from the source u , 
1 ≤ u ≤ ξ i, l  arrived at i  with active-period length l ,  

Ω(i ,t , l) = θ(1,i , t − i + 1, l)+...+θ (ξ i,l , i, t − i + 1,l) .     (B. 1) 

(We underline that the source numbering by s  in process Y  (see 3. 1) has no relation with the 
source labeling by u  which we use now.) The random variables θ (u, i, t − i +1, l)  are 
independent for different triples (u, i, l) .  
 Since 
Eθ (u, i, t − i +1, l) = µ ( l )

, Eθ (u, i, t1 − i +1, l)θ (u, i, t2 − i +1,l) = B( l ) (|t1 − t 2 | ) ,  
we have for  
t1 − l + 1 ≤ i ≤ t1 , t2 − m + 1 ≤ j ≤ t 2 ,        (B. 2) 
that 

Eθ (u, i, t1 − i +1, l)θ (v, j, t2 − j + 1,m) =
B( l ) (| t1 − t2 |), if (u, i, l) = (v, j,m),

µ ( l )µ (m )              otherwise.

 
 
 

 (B. 3) 

 The above equations will be used to express EΩ(i, t, l)  and cov{Ω(i, t ,l),Ω( j , t + k,m)} . 
We have 
EΩ(i, t , l) = (Eξ i ,l )µ

(l ) = λ Pr{τ = l}µ ( l) ,        (B. 4) 

and for the region (B. 2),  
EΩ(i, t1 , l)Ω( j ,t2 ,m) =  

=
(λ Pr{τ = l}µ (l ) ) 2 + λ Pr{τ = l}B(l ) (| t

1
− t

2
| ), if (i ,l) = ( j,m)

λ2 Pr{τ = l}Pr{τ = m}µ (l )µ (m ) otherwise

 
 
 

   (B. 5) 

 From (B. 4) and (B. 5), it is follows that  
cov{Ω(i, t ,l),Ω( j , t + k,m)} = λ Pr{τ = l}B(l ) (k )δ ij δ lm     (B. 6) 

for region (B. 2) with t1 = t , t2 = t + k .  



 Next and final step is to find the mean and the correlation coefficient of 
Y = (...,Y−1 ,Y0 ,Y1 , ... ). Since  

Yt = Ω(i ,t, l)
i= t −l +1

t

∑
l =1

∞

∑ ,          (B. 7) 

we obtain (3. 3) using (B. 4).  
 Since Ω(i ,t , l)  are independent for different (i, l) , we get from (B. 7) that 

cov{Y
t
,Y

t + k
} = cov{Ω(i ,t, l),Ω( j, t + k,m)}

j = t +k −m +1

t +k

∑
m =1

∞

∑
i =t − l +1

t

∑
l =1

∞

∑ .    (B. 8) 

 The equations (B. 6) and (B. 8) give (3. 4). ∴ 
   
 
APPENDIX C: PROOF OF THEOREM 4 
 Proof of Theorem 4 (2). In the proof, we shall use the expressions (3. 3) and (3. 4) for 
mean and autocovariance function  of process Y . Here, the autocovariance function is denoted as 
w(k) ˆ = cov{Yt ,Yt + k}.  
 First, we show that (3. 7) and (3. 8) are the necessary conditions for exact self-similarity 
of Y . When Y  is ess, we have EYt < ∞ , σ 2 ≡ w(0) < ∞ , and  

r (k ) ˆ = 
w(k )
w(0)

=
1
2

δ 2 (k 2−β ), k ∈ I1 .        (C. 1) 

It means that 0 < σ 2 < ∞ . Hence, using (3. 4), we have  

0 < Pr{τ = l}B(l )

l =1

∞

∑ ˆ = a−1 < ∞ .  

 Let us introduce a random variable τ ∗
 with  

Pr{τ ∗ = k} = a Pr{τ = k}B(k ) , k ∈I1.        (C. 2) 
 The equations (3. 4) and (C. 2) give 

w(k) = λa−1 Pr{τ ∗ ≥ l}
l = k +1

∞

∑ , k ∈I0 .        (C. 3) 

 It follows from (C. 1) and (C. 3) that 
Pr{τ∗ = k} = λ−1aδ 2 (w(k )) = λ−1aw(0)δ2 (r(k))     (C. 4) 
or 

Pr{τ∗ = 1} =
aσ 2

2λ
(32−β − 24−β + 7) ,        (C. 5) 

Pr{τ∗ = k} =
aσ 2

2λ
δ 4 (k2−β ), k ∈I2 .        (C. 6) 

[The equation (C. 6) (regarding it holds for k ∈ I1 ) was obtained by Cox [6] as a sufficient 

condition for exact self-similarity of Y  in the case µ (l ) = B(l) = 1. ] 
 Summing (C. 5)-(C. 6) over 1 ≤ k < ∞ , we get 

aσ 2 = 2λ [32−β − 24−β + 7 + δ 4

k =2

∞

∑ (k 2−β )]−1
.       (C. 7) 

 The sum over 2 ≤ k < ∞  can be calculated,  

δ 4 (k 2− β

k =2

∞

∑ ) = 3(22 −β − 31−β − 1), 0 < β <1 ,       (C. 8) 



giving 

aσ 2 =
λ

2 − 21−β
.           (C. 9) 

[Note that if (C. 5)-(C. 6) are multiplied by k  and k Pr{τ∗ = k} is summed over 1 ≤ k < ∞ , we 
get the equation  

32 −β − 2 4−β + 7 + kδ 4 (k 2−β ) = 2
k=2

∞

∑        (C. 10) 

which is an identity when 0 < β < 1. ] 
 The condition (3. 7) follows from (C. 2), (C. 5), (C. 6), (C. 7), and (C. 9). The condition 
(3. 8) follows from EYt < ∞ ,0 < a < ∞ , (3. 7), and (3. 3).  
 Second, we show that (3. 7)-(3. 8) are the sufficient conditions for exact self-similarity of 
Y . The sufficiency easy follows from inversability of relations between w(k)  and Pr{τ ∗ = k}  
and between w(k)  and r (k )  (see (C. 1), (C. 3), and (C. 4)) and from fulfilment of σ 2 < ∞  
(because of (C. 9)) and EYt < ∞  (because of (C. 6) and (3. 3)). ∴ 
 Proof of Theoren 4 (3). We use the same notations as above.  
 With (3. 4) and  
w(k) = λB(0)r(k)Eτ, k ∈I0 ,         (C. 11) 
we get 

Pr{τ = k} = r(k +1)
B(k + 1)

− 2
r (k )
B(k)

+ r(k −1)
B(k − 1)

 
  

 
  B(0)Eτ, k ∈I1.    (C. 12) 

 If Y  is es-s with H = 1 −
β
2

, 0 < β < 1, it has r (k ) =
1
2

δ 2 (k2 −β ) , k ∈ I1 , r (0) = 1 

and (C. 12) gives 

Pr{τ = 1} =
32− β − 23−β +1

2B(2)
+

2 − 22− β

B(1)
+

1
B(0)

 
  

 
  B(0)Eτ ,     (C. 13) 

Pr{τ = k} =
B(0)Eτ

2
δ 2 δ 2 (k 2−β )

B(k )
 
 
 

 
 
 , k ∈ I2 .      (C. 14) 

 Summing (C. 13)-(C. 14) over 1 ≤ k < ∞  , expressing Eτ ,and useing the equation 

δ 2

k =2

∞

∑ δ 2 (k2 −β )
B(k)

 
 
 

 
 
 =

δ 2 (k 2−β )|
k =1

B(1)
−

δ 2 (k 2−β )|
k = 2

B(2)
, 0 < β < 1,            

we get (3. 13) . 
 Now, (C. 13),(C. 14) ,and (3. 13) give (3. 11)-(3. 12) and we proved that (3. 11)-(3. 12) 
are necessary for exact self-similarity of Y .   
 [Note that if we multiply (C. 13)-(C. 14) by k  and sum k Pr{τ = k} over 1 ≤ k < ∞ , we 
get the equation which is an identity for 0 < β < 1 since 

kδ 2

k =2

∞

∑ δ 2 (k 2−β )
B(k )

 
 
 

 
 
 =

23−β − 4
B(1)

−
32−β − 2 3−β + 1

B(2)
, 0 < β < 1. ] 

 The sufficiency of (3. 11)-(3. 12) can be easy proved with inversability argument as above and 
with check that EYt < ∞ , σ 2 < ∞  when (3. 11)-(3. 12) hold. ∴ 



 Proof of Theorem 4 (4). It is a corollary of Theorem 4 (3). ∴ 
 Proof of Theorem 4 (1). It evidently follows from the definition of es-s process and from 
(3. 3) and (3. 4). Note that the condition σ 2 < ∞  follows from (3. 5) and the condition 
EYt < ∞  is guaranteed by (3. 6). ∴  
  
  
     
APPENDIX D: PROOF OF THEOREM 5 
 Proof of Theorem 5. The equation (3. 4) gives 

w(l) ˆ = cov{Yt ,Yt +l} = λ Pr{τ = n}B(n) (l)
n= k

∞

∑
k =l +1

∞

∑ .      (D. 1) 

 Denote f (l) ˆ = Pr{τ = l}B(l) (l) , l ∈ I1. According to (3. 17), the function f (l)  can be 

extended on a continuous neighbourhood of infinity, [a,∞) , a ≥1  as a − (β + 2)  rvf, i. e. 

f (x ) ~ L(x)x− (β + 2)
, where svf L(x )  is locally bounded in [a,∞) . Here and below without 

loss of generality, we assume that a  is an integer.  
 The equation similar to (A. 3) holds,  

f (n) ~ L(x)x− (β +2)

k

∞

∫
n=k

∞

∑ dx, k → ∞ .        (D. 2) 

 To prove (D. 2), we use the relation ai ~ bi , i → ∞  where ai ˆ = f (i) , bi ˆ = f (x)dx
i

i +1

∫ . 

This relation is proved in the proof of Lemma A. 1.  
 Since ai∑  and also bi∑  (where both sums are over a ≤ i < ∞  ) converge, we have 

bi − ai∑∑ ≤ bi∑ |1 − (ai / bi )|. If ai ~ bi , there exists ε (a)  such that 

bi − ai∑∑ < ε (a) bi∑ → 0, a → ∞ , and we have proved (D. 2).  

 According to direct Karamata's Theorem (see Theorem 1. 5. 11 in [2] ), we get from (3. 
17) and (D. 2) that 

Pr{τ = n}B(n) (k)
n=k

∞

∑ ~ L(x)x− (β +2)dx
k

∞

∫ ~
L(k)k −(β +1)

β + 1
, k → ∞ .    (D. 3) 

 By the same arguments, we get  

L(k )k −(β +1)

k =l +1

∞

∑ ~
L(l)l −β

β
, l → ∞ .        (D. 4) 

 The equations (D. 1), (D. 3), and (D. 4) give 

w(l) ~
λL(l)l −β

β(β +1)
, l → ∞ .         (D. 5) 

 Finally, (D. 5) together with Theorem 2 prove Theorem 5. ∴ 
 
APPENDIX E: DEFINITIONS OF REGULAR VARIATION  
 Definition. A measurable function f (x ) > 0  satisfying  
f (ux ) / f (x) → uρ , x → ∞  

for each positive u , is called the index ρ  regularly varying function (rvf).  



 If ρ = 0, then rvf f (x )  is called the slowly varying function (svf).  
 

 If f (x )  is an index ρ  rvf then f (x ) = L(x)xρ
 where L(x ) is a svf.  

 Definition. A sequence f (0), f (1), ...  of positive nubmers is called the index ρ  
regularly varying sequence (rvs) with continuous variable u  if  
f ([un]) / f (n) → uρ , integer  n → ∞       (E. 1) 

for each positive u  where [x ] is the integer part of x .  
 If ρ = 0, then a rvs f (0), f (1), ...  with continuous variable u  is called the slowly varying 
sequence (svs) with continuous variable.  
 
 Definition. A sequence f (0), f (1), ...  of positive numbers is called the index ρ  rvs with 
integer variable m  if 
f (mn) / f (n) → mρ , integer  n → ∞        (E. 2) 

for each positive integer m .  
 If ρ = 0, then a rvs f (0), f (1), ...  with integer variable m  is called the svs with integer 
variable.  
  
 
 
 


