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Abstract

We state and prove the following key mathematical result in self-similar traffic modeling: the superposition of
many ON/OFF sources (also known as packet trains) with strictly alternating ON- and OFF-periods and whose
ON-periods or OFF-periods exhibit the Noah Effect (i.e., have high variability or infinite variance) can produce
aggregate network traffic that exhibits the Joseph Effect (i.e., is self-similar or long-range dependent). There is,
moreover, a simple relation between the parameters describing the intensities of the Noah Effect (high variability)
and the Joseph Effect (self-similarity). This provides a simple physical explanation for the presence of self-similar
traffic patterns in modern high-speed network traffic that is consistent with traffic measurements at the source
level. We illustrate how this mathematical result can be combined with modern high-performance computing
capabilities to yield a simple and efficient linear-time algorithm for generating self-similar traffic traces.

We also show how to obtain in the limit a Lévy stable motion, that is, a process with stationary and independent
increments but with infinite variance marginals. While we have presently no empirical evidence that such a limit
is consistent with measured network traffic, the result might prove relevant for some future networking scenarios.

1 Introduction

In our recent paper [22], we stated a mathematical result that allows for a simple and plausible physical explanation
for the observed self-similarity of measured Ethernet LAN traffic (e.g., see [12, 13]), involving the traffic generated
by the individual sources or source-destination pairs that make up the aggregate packet stream. Developing an
approach originally suggested by Mandelbrot [15] and brought to the attention of probabilists by Taqqu and Levy
[19], we presented (without proof) a result that states that the superposition of many strictly alternating independent
and identically distributed ON/OFF sources (also known as “packet trains”; e.g., see [8]), each of which exhibits a
phenomenon called the “Noah Effect”, results in self-similar aggregate traffic. Intuitively, the Noah Effect for an
individual ON/OFF source model results in ON- and OFF-periods, i.e., “train lengths” and “intertrain distances” that
can be very large with non-negligible probability; that is, each ON/OFF source individually exhibits characteristics
that cover a wide range of time scales. The Noah Effect is synonymous with the infinite variance syndrome, and as
the mathematical vehicle for modeling such phenomena we use heavy-tailed distributions with infinite variance (e.g.,
Pareto or truncated stable distributions). The ON- and OFF-periods are not required to have the same distribution.

In this paper, we provide the proof of this fundamental result in self-similar traffic modeling as stated in [22].
The proof does not follow from the work of Mandelbrot [15] or Taqqu and Levy [19]; it is more delicate and requires
a different approach and new methodologies. By presenting the mathematical results in the well-known framework
of the popular ON/OFF sources or packet train models, we are able to identify the Noah Effect as the essential point

of departure from traditional to self-similar traffic modeling. Moreover, the parameter « describing the “intensity”
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of the Noah Effect (or equivalently, the “heaviness” of the tail of the corresponding infinite variance distribution) of
the ON- and/or OFF-periods of a “typical” source is related to the Hurst parameter H, where the latter has been
suggested in [12] as a measure of the degree of self-similarity (or equivalently, of the “Joseph Effect”) of the aggregate
traffic stream. Our results apply in practice when there is a large enough number of ON/OFF sources, and for time
scales that are within natural cut-offs. The lower cut-off for the time scales reflects the fact that we essentially ignore
(at the source level as well as at the aggregate level) the fine-structure that is concerned with how individual packets
are sent over the raw media (in our case, a coaxial cable) and is determined by the media-access protocols (in our
case, the Ethernet’s CSMA/CD protocol). Thus, our results also provide evidence that for a sufficiently high levels
of aggregation (large M) and for time scales away from the lower cut-off, the nature of aggregate Ethernet LAN
traffic does not depend on the fine structure of the underlying media-access mechanisms The upper cut-off region for
the time scales arises naturally from the presence of daily cycles that can be found in most working packet networks.

As an application, we combine this mathematical result with modern high-performance computing and commu-
nication capabilities, in order to obtain a highly efficient, linear-time parallel algorithm for synthetically generating
self-similar network traffic at the packet level. Such fast algorithms for generating long traces of realistic network
traffic have hitherto been scarce but are invaluable for a systematic study of many of the currently unsolved issues
related to network engineering and traffic management of modern high-speed networks.

We also show in Section 2.3 how it is possible to obtain in the limit, the Lévy stable motion, an infinite variance
process whose increments are stationary and independent. Although the practical relevance of this particular result
to networking is not clear at this stage, it is related to Theorem 1, and we provide here a precise statement and a

rigorous proof.

2 Self-Similarity via Infinite Variance Phenomena

The setting considered in this section is the same as the one presented in [22]; to ensure that our presentation below is
self-contained, we repeat here the basic mathematical framework and the corresponding notation. Recall that in [21],
we presented an idealized ON/OFF source model which allows for long packet trains (“ON” periods, i.e., periods
during which packets arrive at regular intervals) and long inter-train distances (“OFF” periods, i.e., periods with no
packet arrivals). In that model, however, the ON- and OFF-periods did not strictly alternate: they were i.i.d. and
hence an ON-period could be followed by other ON-periods, and an OFF-period by other OFF-periods. The model
was a relatively straightforward extension of the one first introduced by Mandelbrot [15] and Taqqu and Levy [19].
The setting considered here and in [22] differs from our earlier work in the sense that the processes of interest have
strictly alternating ON- and OFF-periods and agree therefore with the ON/OFF source models commonly considered
in the communications literature. The ON- and OFF-periods, moreover, may have different distributions, either with
infinite or finite variance (a partial treatment of the finite variance case can be found in [11]). Although our main
result is essentially the same as in [21], namely, that the superposition of many such packet trains exhibits, on large
time scales, the self-similar behavior that has been observed in the Ethernet LAN traffic data and WAN traces (see
[12]), the case of strictly alternating ON/OFF sources is much more delicate, and we provide here a rigorous proof.

For related work, we refer to [14] and [6].



2.1 The Case of Homogeneous Sources
2.1.1 Notation and Assumptions

Suppose first that there is only one source and focus on the stationary binary time series {W (t), t > 0} it generates.
W (t) = 1 means that there is a packet at time ¢ and W (t) = 0 means that there is no packet. Viewing W (t) as
the reward at time ¢, we have a reward of 1 throughout an ON-period, then a reward of 0 throughout the following
OFF-period, then 1 again, and so on. The length of the ON-periods are i.i.d., those of the OFF-periods are i.i.d.,
and the lengths of ON- and OFF-periods are independent. The ON- and OFF-period lengths may have different
distributions. An OFF-period always follows an ON-period, and it is the pair of ON- and OFF-periods that defines
an interrenewal period.

Suppose now that there are M i.i.d. sources. Since each source sends its own sequence of packet trains it has its
own reward sequence {W (™ (t), t > 0}. The superposition or cumulative packet count at time ¢ is 2%21 W m ().

Rescaling time by a factor 7', consider

Tt [ M
Wi (Tt) = /0 (Z W<m>(u)) du,

the aggregated cumulative packet counts in the interval [0,T¢]. We are interested in the statistical behavior of the
stochastic process {W3,(Tt), t > 0} for large M and T. This behavior depends on the distributions on the ON-
and OFF-periods, the only elements we have not yet specified. Motivated by the empirically derived fractional
Brownian motion model for aggregate cumulative packet traffic in [21], or equivalently, by its increment process, the
so-called fractional Gaussian noise model for aggregate traffic (i.e., number of packets per time unit), we want to
choose these distributions in such a way that, as M — oo and T — oo, {W;;(Tt), t > 0} adequately normalized
is {olimBu(t), t > 0}, where o is a finite positive constant and Bpy is fractional Brownian motion, the only
Gaussian process with stationary increments that is self-similar. By self-similar, we mean that the finite-dimensional
distributions of {T~#Bg(Tt), t > 0} do not depend on the chosen time scale T. The parameter 1/2 < H < 1
is called the Hurst parameter or the index of self-similarity. Fractional Brownian motion is a Gaussian process
with mean zero, stationary increments and covariance function EBg(s)Br(t) = (1/2){s* + t?H — |s — t|2H}. Its

increments G; = By (j) — Bu(j —1), j =1,2,... are called fractional Gaussian noise. They are strongly correlated:
EGu(j)Gu(j +k) ~ H2H — 1)k*"=2 as k — oo,

where ap ~ br means ag/bp, — 1 as k — oco. The power law decay of the covariance characterizes long-range
dependence. The higher the H the slower the decay. For more information about fractional Brownian motion and
fractional Gaussian noise, refer for example to Chapter 7 of Samorodnitsky and Taqqu [16].

To specify the distributions of the ON/OFF-periods, let
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denote the probability density function, cumulative distribution function, complementary (or tail) distribution, mean

length and variance of an ON-period, and let f2, F», F., pa,05 correspond to an OF F-period. Assume as x — o0,
either Fi.(z) ~ €1z * Ly(x) with 1 < a; <2 or o? < oo,

and

either Fy.(x) ~ lox™%2Ly(x) with 1 < @z <2 or o2 < 00,

where £; > 0 is a constant and L; > 0 is a slowly varying function at infinity, that is lim,_,o L;(tx)/L;(x) = 1 for
any t > 0. For example, L;(z) could be asymptotic to a constant, to log z, to (logz)™!, etc. Since the function L;
will be used as normalization in (1) below, it is preferable not to absorb the constant ¢; into it. (We also assume
that either probability densities exist or that F;(0) = 0 and F} is non-arithmetic, where Fj is called arithmetic if it is
concentrated on a set of points of the form 0, £\, £2X,---.) Note that the mean pu; is always finite but the variance
032. is infinite when a; < 2. For example, F; could be Pareto, i.e. Fj () = K%z~% forz > K > 0,1 < a; <2 and
equal 0 for z < K, or it could be exponential. Observe that the distributions F; and F3 of the ON- and OFF-periods

are allowed to be different. One distribution, for example, can have a finite variance, the other an infinite variance.

2.1.2 A Fundamental Result in Self-Similar Traffic Modeling

In order to state the main result, the following notation will be convenient. When 1 < a; < 2, set a; = £;(T'(2 —
@;))/(aj —1). When o} < oo, set a;j = 2,L; = 1 and a; = 03/2. The normalization factors and the limiting

constants in the theorem below depend on whether

b= lim to2-os 2200
t—o0 L2 (t)

is finite, 0, or infinite. If 0 < b < oo (implying a@; = as and b = lim; ,o Li1(t)/L2(t)), set amin = 01 = ao,

2(p2arb 2
Jl2im = ('UI2a13 + MIUQ) 5 and L= LQ;
(:u’l + /J/Z) P(4 - amin)
if, on the other hand, b = 0 or b = o0, set
2 .
2 — 2p’maxamm and [ = Lmin,

Olim ’
' (1 + p2)3T(4 = amin)
where min is the index 1 if b = 0o (e.g. if a1 < @) and is the index 2 if b = 0, max denoting the other index. We
claim that under the conditions stated above the following holds:

Theorem 1. For large M and T, the aggregate cumulative packet process {Wy,(Tt), t > 0} behaves statistically like

TMﬁt + TH\/I(T)MoymBx (1)
1 2

where H = (3 — amin)/2 and onum is as above. More precisely,

(WJ’(/I(Tt)—TM m t)

. . p1tpe
R L SV RVET, SN VEVE

= oimBu (1), (1)

where Llim means convergence in the sense of the finite-dimensional distributions.



Heuristically, Theorem 1 states that the mean level given by T'M (u1 /(1 + p2))t provides the main contribution
for large M and T'. Fluctuations from that level are given by the fractional Brownian motion oy, Br(t) scaled by
a lower order factor TH L(T)'/2M'/2. As in [19), it is essential that the limits be performed in the order indicated.
We will consider the case where the limits are performed in reverse order in more detail in Section 2.3 below. Also
note that 1 < apin < 2 implies 1/2 < H < 1, i.e., long-range dependence. Thus, the main ingredient that is needed

to obtain an H > 1/2 is the heavy-tailed property
Fje(z) ~ iz Lj(xz), asz—o00, 1<a; <2 (2)

for the ON- or OFF-period; that is, a hyperbolic tail (or power law decay) for the distributions of the ON- or OFF-
periods with an « between 1 and 2. A similar result obtains if W, (T't) is replaced by the cumulative number of

bytes in [0,Tt].
2.1.3 Some Special Cases

(a) Suppose a3 = ay = 2, that is, the ON- and OFF-periods both have finite variance. Then (1) holds with H = 1/2
and L = 1, and the limit is
1/2
[u%af + ufag] ! B(t)
(11 + p2)?
where B(t) is Brownian motion.

(b) Suppose Fi = F, that is, the ON- and OFF-periods have the same distribution. Then o3, = a/(2uT'(4 — a))
where o and p are, respectively, the common index and mean. In particular, if o < 2, (1) holds with H =
(3—a)/2, L = L1 = Ly and the limit is

[ l
2ulac —1)2—a)3—a

(c) Suppose amin < Gmax, that is, either the ON- or OFF-period has infinite variance and one of them has a heavier

)] v By ().

probability tail than the other. Then (1) holds with H = (3 — amin)/2, L = Ly and the limit is

2 2 emin 12
[ . Hmax :| BH(t)
(lffl + /J/2) (amin - 1)(2 - amin)(?’ - amin)

2.1.4 A Weak Convergence Result

Proceeding as in [18] or establishing the necessary tightness conditions directly (see Section 3), one can easily verify
that £lim7_, o, in Theorem 1, can be replaced by the convergence, as T' — oo, of probability measures in the space
C'[0, 00) of continuous functions on [0, 00); this mode of convergence is also known as weak convergence (e.g., see [1]).
Weak convergence implies, for example, convergence of maxima and minima, and is particularly useful in queuing

applications.

2.2 Heterogeneous Sources

Weakening our hypothesis, suppose now that not all sources are identical. Assume R types of sources and that there
is a proportion M (") /M of sources of type r = 1,..., R, with M(") /M not converging to 0, as M — oo (r = 1,...,R).

For j =1,2, let Fj(r),a(”, o™, L{") be the “characteristics” of source r.



Theorem 2. For large M"), r = 1,..., R and large T, the aggregated cumulative packet traffic {Wi,(Tt), t > 0}

behaves statistically like

R (r) R
! (Z M mL) t+ S THO\IO@MO o) Bye (1)
r=1

= w” + g

where H(") = (3 — a{") )/2 and the By are independent fractional Brownian motions.

min

Theorem 2 states that the limit is a superposition of independent fractional Brownian motions with different
H(")’s. As far as the fluctuations are concerned, however, the term with the highest H(") (or equivalently, the term
with the smallest a(")) ultimately dominates as T — oo. Note that Theorem 2 allows for the possibility that for
some source types r, the distributions of the corresponding ON- and OFF-periods have finite variance. In this case,
the contribution of type r to the limit will consist of an ordinary Brownian motion component. Theorem 2 is an easy

consequence of Theorem 1.

2.3 Taking the Limit in Reverse Order

We have seen that to obtain a fractional Brownian motion limit (see (1)), it was essential to first let M — oo and
then T' — oo. This limit regime was shown in [22] to be consistent with measured aggregate traffic from Ethernet
LAN environments; that is, under non-trivial overall loads on a Ethernet LAN, there are typically a few hundred
active source-destination pairs (large M) and for time scales T that range through several orders of magnitude, the
measurements exhibit approximately Gausssian marginals and long-range dependence.

In this section, we examine what happens when one first lets T — oo and then M — co. While at this stage, we
do not have empirical evidence for this limit regime in the traffic measurements that are presently available to us,
the result stated below is of independent interest and is given here for completeness. It may prove relevant in some
future networking scenarios.

A partial treatment involving only heavy-tailed ON-periods can be found in Konstantopoulos and Lin [10]. We
describe here what happens in the general case. The situation, in fact, is very similar to that considered in Taqqu
and Levy [19]. The limit, when first T' — o0, is not fractional Brownian motion but the Lévy stable motion, a process
with stationary independent increments.

The Lévy stable motion {A4,sa(t), t > 0} is self-similar with index 1/a. o > 0 is a scale parameter and
—1 < B <1 is the skewness parameter. When a = 2, it has continuous paths and is Brownian motion, but when
1 < a < 2, it has discontinuous paths and infinite variance. Because it has stationary independent increments, it
is sufficient to provide the distribution (or its Fourier transform, the characteristic function) at time ¢ = 1. The

characteristic function of A4, 3(1) belongs to the “stable” family and is given by
Eehao0() = exp{—0®|0|*(1 — i(signh)) tan %}, —00 < 0 < o0, (3)

when a < 2. In particular, the complementary distribution function satisfies

1+
2

P[Ag,0,5(1) > 2] ~ Coo® ™% as x— ™



where
11—«
(2 — a) cos(ra/2) |’

Cy =
hence Ay (1) has heavy tails. By self-similarity,

1+

5 tr™® as x — oo.

P[Ag,op(t) > x] = P[tY/*Ay.5 5(1) > 2] ~ Cuo®

For more details, see Samorodnitsky and Taqqu [16]. The characteristic function (3) can also be used when o = 2.

It reduces then to exp{—o262}, which is the characteristic function of a Gaussian random variable.

For simplicity of presentation, we will assume that the slowly varying functions L; and Ls in the distributions
F; and F; of the ON and OFF periods are equal to 1. The next theorem shows that the Lévy stable motion appears

as T — oo even when one considers only a single source (W (u) = W™ (u) for a fixed source m).

Theorem 3. Let aumin = min(ay, ). Then

£ lim ;/Tt(W(u)—EW(u))du
0

TS500 T1/@min

equals
1/a1

Z .
(lllﬁiw Aal,a,l(t) if a1 < as, a1 < 2, (5)

1/(12

ply

(1 + pa) 1+ /e
(gt + ps o]V
(1 + po)t+1/e

Aag,o‘,—l(t)a if as < a, a1 < 2, (6)

Aa,g’g(t) if a=a =ay <2, (7)

where o = C3'/® and, in (7),
p3ly — pils
=== 8
B usly + psls ®)

In the case oy = as = 2, the limit is

[(p201)? + (p102)%]"/?
(1 + p2)3/?

B(t),

where o2 and o3 are the variances of the ON and OFF period respectively, and where B(t) is standard Brownian

motion.
Remarks: (1) When a; = as, the limiting process is symmetric if p2fy = p1f2, for example, if the ON and OFF

periods are identically distributed.
(2) When a1 = as = 2, the limit is the same as in the case T — oo, M — oc.

(3) If the slowly varying functions L; and L, are not asymptotically equal to 1, then T/®mi» should be replaced
by T'/eminT(T), where L(T) is a slowly varying function. For example, if amin = o1, then L(T) is such that
limy 00 L(T) ™1 Ly (TY*1 L(T)z) = 1 for all z > 0 (see [7], relation (2.6.4)).

(4) The result of Theorem 3 holds also in the sense of weak convergence (in the Skorohod topology J; on DJ0,1],
the space of right-continuous functions on [0, 1] with left limits), that is, it holds as convergence of random processes

in t.



If, after taking the limit 7' — oo, we accumulate a number M of sources, and/or let M — oo, the limiting

processes do not change.
Theorem 4. The conclusion of Theorem & holds also for

Tt M
(m) () — (m)
£ Jim o [ 3 W) — WO w)du, 21,

and for

Tt M
£ lim £ lim / W™ (u) — EW™ (u))du.

Moo T—oo MT 1/O‘mm
This is an immediate consequence of Theorem 3 because each m yields an independent copy of the Lévy stable

motion.

When apin < 2 one then gets different limits, depending upon whether T — 0o, M — 00 or M — o0, T — o0.
The limit in the first case is the Gaussian fractional Brownian motion. The limit in the second case is the infinite
variance stable Lévy motion. In practice, the behavior depends on the relative sizes of M and T. Observe that this
does not contradict the behavior of V (T") =Var( fo u)du). The relation V(T) ~ CT*H holds for large but finite
T. If the limiting distribution is Gaussian, then T is the right normalization for the process and V (T') will converge
to a finite limit. If the limiting distribution is the Lévy stable motion, then the correct normalization for the process

is T1/@min  Since
3 - Omin > 1
2 Qmin

TH is greater than T"/*=in. Hence the normalization T"/®mi» makes Var(7T ~/%min fOT W (u)du) = T—2/@minV(T) ~

H= for 1< amin < 2,

CT?H~1/amin) tend to infinity as T — 0o, which is consistent with the fact that the Lévy stable motion has infinite

variance for amin < 2.

3 Proof of Theorem 1

We shall prove Theorem 1; Theorem 2 is an easy extension. To this end, note that the aggregated reward fg’ W (u)du

V(t) = Var (/Ot W(u)du) =2 /Ot (/va(u)du> dv )

where y(u) = EW (u)W(0) — (EW (0))? denotes the covariance function of W. We claim that it is sufficient to prove

by time ¢ has variance

V(t) ~ ol tPHL(t) as t— oo. (10)
Indeed, suppose that this last relation holds. Then

£ lim M~1/? 2 W () — EW™ (t)) = G(t), t>0,

M—o0

by the usual Central Limit Theorem. Moreover, the process {G(t), ¢t > 0} is Gaussian and stationary (since the

W (t)’s are stationary) and has mean zero and covariance function {vy(t), ¢ > 0}. Now, (10) implies

b—o0

£ lim (T*P L(T))~'/? / " G(u)du = ouimBr(t), t > 0. (11)



Indeed, the limit in (11) must be Gaussian with mean zero and have stationary increments since the integral of G
has these properties. Moreover, by (10), its variance must be o2 t*H for fixed ¢ (e.g., see [5, Lemma 1, p. 275]).
Since these properties characterize the fractional Brownian motion oum B (t), (see for example, [16, Corollary 7.2.3,
p.- 320]), Relation (11) follows, proving Theorem 1.

It is therefore sufficient to establish (10). Since the reward process W is stationary, its mean is EW(t) =
P(tis on) = p1 /(1 + pe2) for all t. (By “tis on”, we mean “t is in an ON-period”.) The main difficulty is to evaluate
its covariance function 7 (¢). If 711 (¢t) = P(time ¢ is on | time 0 is on), then EW (0)W (¢t) = P(times 0 and ¢ are on)
= m1(t)p1/ (1 + p2) and hence

) = L ) - (12)
Since as t — 00, m11(t) = P(time t is on) = p1 /(p1 + p2), we have limy_, o, y(t) = 0. We need, however, to determine
the asymptotic behavior of ¥(t) or, at least, that of its double integral V (¢) given in (9).

Following [4], we shall evaluate the Laplace transform of 711, in order to get that of v and V. The renewal
equation for 7 (¢) is .

m11(t) = G1c(t) +/0 Fi.(t —u)dHy2(u), (13)

with G1.(t) = P(remaining life of the first on interval > ¢ | time 0 is on), and where Hy3(u) is the renewal function
corresponding to the inter-renewal distribution F x F5. (His = EZOZI(Fl * Fy)*k . Tts density hqo(u), when defined, is
the probability density that the end of an OFF-period occurs at time u given that time 0 is on). To understand (13)
note that if 0 is on, then ¢ can be on either if it belongs to the same ON-period as time 0 or, if there is a subsequent
OFF-period, that there is an ON/OFF transition at some time u and ¢ belongs to this subsequent ON-period. The
corresponding Laplace transform is

711(s) = G1e(s) + haa(s) (1 — f1(s))/s.

-~

(The Laplace transform of a function A(t) is denoted A(s) = [~ e"** A(t)dt, s > 0.)*

(
Since we start in a stationary regime, we have G1.(t) = uy* [ Fie(u)du, and thus
1

A 1— fils)
-~ _ 14
GIC(S) S ,U/182 ) ( )
and since (we have a delayed renewal process here)
7'\L12(S) — (1 - fl/(\s))fa(s) 7
p18[1 = fi(s) f2(s)]
we can derive 711 (s). Then, using (12), we get, as in [4],
1-fi(s)(1—F
ST S (£ 1C)( (S A0/ .
(1 +p2)?s (1 + p)s2[1 — fi(s) fa(s)]
Since by (14), (1 — f;)/ujs = 1 — sGjc and f; =1 — pjs + p;52Gje, j = 1,2, 5 becomes
) = M
pr+pe (g + po)s
p i (1 = 5G1c(8))(1 — 5G2c(s)) (16)

pt e 1—T, (1= pjs + ps2Gie(s)

1 Although convenient, it is not necessary to assume that densities exist. (In this case, it is sufficient to suppose that F; is non-arithmetic
and F;(0) =0, j =1,2.) The functions f; and hi2 are then defined as f; = sF; and hi2 = sHia.



The denominator of the second fraction behaves like (ug + p2)s — s%(u1 Gie+ /,Lzézc +p1pe) as s — 0. (It is important
not to drop the s? term.) Substituting this in (16), simplifying and then using (9), yields

V(s) = 253(s)

2 (u%ulélc(s) + p3 2 Goc(s) — M%H%) a7
(11 + p2)?s? ’

as s = 0. Now consider two cases:

(a) If Fjc(u) ~lju=* Lj(u) asu — 00, 1 < <2, then as t — oo,

1 [ £;
Gie(t =—/ Fio(u)du ~ ——3 4L (1), 18
je(t) ), je(u) 1o(a; 1) i(t) (18)
and consequently (see [2, Theorem 1.7.6]),
A aj—2 1
1;iGjc(s) ~ ajs® Li(g) as s —0, (19)

with a; = £;(I'(2 — a;))/(a; — 1)
(b) If F; has finite variance o7, then Fi(s) ~1—p s+ (1/2)(03 + p3)s* as s = 0, and hence, by (14),

1;Gie(s) ~ (02 + p2)/2 as s — 0.
Recall, that in the case (b), we set a; = 05/2, a; =2 and L; = 1.

Substituting these expressions for @jc, j=1,21in (17) we get, in all cases 1 < a1, as < 2,

2 (p3a15* L1 (3) + piass®>*La(3))
(1 + p2)?
1
= ol T(4— amin)s“min—‘*L(;), (20)

V(s) ~

as s — 0, using the notation introduced before the statement of Theorem 1. We want to conclude that
V(t) ~of t37%in[(t) as t — oo, (21)

which is Relation (10) with 2H = 3 — aujq-
Trying to invert the Laplace transform 17(8) through integration in the complex plane (viewing s as complex-

valued) would involve making assumptions of analyticity that cannot be verified. To get (21) it is sufficient to show

that (20) holds and
limliminf inf M
M1 z—0co te[1,A] 23~ %min [(1)

>0 (22)

(with L =1 when o, = 2) by the extended form of Karamata’s Tauberian Theorem (e.g., see [2, Theorem 1.7.6]).

It remains to verify (22) and, in order to do so, we will work in the time domain. Recall equation (9) and
observe that the contribution of additive terms in V that are non-decreasing (i.e. with non-negative derivative) can
be ignored since they will automatically satisfy (22). The key is to express 7y in terms of

t

A(t) = Hiat) = -

10



Recall that Hi(t) is the renewal function of an alternating renewal process whose interrenewal periods have distribu-
tion FyxF» and mean p; +us. Consequently, the function A(t) is positive for large ¢ and the function B(t) = A(t)+1is
always non-negative ([5, Theorem 1, p. 366]). 2 Using the expressions of v and 717 given in (9) and (13) respectively,

we get

_ 2! M2 ¢ _
1) = pi + po [Nl +M2G1°(t) +/0 Bl u)dA(u)]'

Since G, is non-negative, we will focus on

Q(t) = / Fio(t — u)dA(u) = A(f) - / Fi(t — u)dA(u),

since A(0) = 0. Integrating the last term by parts and using Fj(0) = 0 gives

QW) = A+ /0 A(u)dFy (¢ —u)
= A(t)+ /00 A(u)dF (t — ).
0
(If f1 exists, Q(t) = A(t) — [;° A(u)f1(t — u)du.) Therefore the integral of Q, Q*(7): = [ Q(t)dt, equals

Q*(7)

/0 " At — /0 " AW Fy (7 — w)du
/OT A(u)Fio(T — u)du.

Expressing @Q* in terms of B(u) = A(u) + 1 > 0, we get

Q*(1)

/0 " B(u)Fio(r — u)du — /0 " Fre(r — u)du

/0 " B(w)Fio(r — w)du — juGa (7).

Since the first integral is non-negative, it is sufficient to focus on —u;G1(7) and to show that Relation (22) is
satisfied with V (¢) replaced by — f(f G1(7)dr. That relation holds because — fmm Gi(1)dr > —tz + = =z(1 —t) and
infery zj2(1 — t) = 2(1 — X), concluding the proof.

Proof of weak convergence. Having shown that the finite-dimensional distributions converge, in order to establish
weak convergence in the space of continuous functions, it is sufficient to prove that tightness holds, for example, that

for all ¢1,%2 > 0 and large enough T,
E|X(Tt2) — X(Tt1)|" < Clta — t1]°, (23)

for some v > 0 and § > 1 (see e.g. [1], p- 95). Here X () is the limit in (1) after letting M — oco. Focusing on the
case H > 1/2, we shall choose v = 2 and show that Relation (23) holds with some § > 1. Since X (¢t) is Gaussian

with variance V'(¢) given in (9) and has stationary increments,

A= E|X(Tty) — X(Tt)|> =T L YTV (T (t2 — t1)).

2If Fy = F, has finite variance 02, = 02 + 02, then A(t) — (02, — u2,)/2u2, where p12 = p1 + w2 (see also [9, p. 195]). B(t) —
(62, + u2,)/2u?,. A and B tend to infinity if F1 * F» has finite mean but infinite variance. In the latter case, by [20, Theorem 4], if
F1 % Fy is regularly varying at infinity with exponent —a, 1 < a < 2, then A (and B) is regularly varying with exponent 2 — a.

11



Since V (t) satisfies (10), there is, for any € > 0, a fixed number T, such that for all T' > T,

. o L(T (ta — t1))
A S (]. + C)Ulzim(tQ — t]_)ZHT
Now, L(Tw)/L(T) tends to 1 as T' — oo for all 4 > 0 and is uniformly bounded by Cou~¢, for any ¢y > 0. Choosing

€0 50 that § = 2H — ¢y > 1, yields A < C(t2 — t1)°, which establishes tightness and hence the weak convergence.

4 Proof of Theorem 3

Since we want to evaluate fOTt(W(u) — EW (u))du, we shall always consider rewards with their mean EW (u) =
Pltime is on] = p1/(u1 + pe2) subtracted. Let Uy (1),Us(1),... denote the i.i.d. ON periods with distribution Fj
and mean p; and let Us(1),Us(2), ... denote the i.i.d. OFF periods with distribution F, and mean ps. The 0* ON
and OFF periods U;(0) and Uz(0), respectively, may have a different distribution in order to ensure stationarity. A

renewal interval will include both an ON and an OFF period.

Since in the k** renewal interval, k > 1, the reward 1 — p; /(uy + po) lasts for Uy (k) units of time and the reward
0 — p1/(p1 + p2) lasts for Us(k) units of time, the cumulative reward (with its mean subtracted) in the k" renewal

interval, is

J(k) = Ui(k) [1— MTM] +Us(k) [O_ mlfuz]

_ H2 _ _ M1 _
P uz[Ul(k) EU: (k)] o +H2[U2(k) EU, (k)] (24)

because EU; (k) = p1, EUs(k) = ps. Denote the renewal epochs by S(k) = E?:o(Ul (j) + Us(4)) and the number of
renewal intervals through time T by 1+ K (T); the “1” here corresponds to the 0" renewal interval (which starts at

time 0 and ends at time S(0)) and the K (T)* renewal includes time 7.

We can now express the cumulative reward (with its mean subtracted) from time 0 to time 7't as

Tt K(Tt)
/ (W(u) — EW(u))du = [O,(1) + Z J(k) +O0,(1) | I(Tt > S(0)) + O,(1)TtI(Tt < S(0)). (25)
0 k=1

In order to understand this expression, let us first introduce the notation Op(1).

Any random variable X can be expressed as X = O,(1), since it satisfies P[X < oo] = 1 and hence is bounded
in probability. The notation O,(1) is useful when it is not necessary to specify X fully, for example, if all one wants
is to use the property that, for € > 0, T7°O,(1) = O,(T~°) is a random variable that tends to zero in probability
as T — oo. Note that Op(1) + Op(1) = Op(1) where each O,(1) possibly denotes a different random variable. The

indicator function of a set A is denoted I(A).

Let us now explain (25). Consider the case where Tt > S(0). The first O,(1) in the bracket in (25) corresponds
to the cumulative reward in the 0" renewal interval. The sum Zfz(lﬂ) J(k) includes the rest, but since Tt falls in
the K (Tt)!" renewal interval, it is necessary to subtract the excess reward (this is done by the last O,(1) term in

the bracket).

12



Focus now on the case Tt < S(0), that is when T't is included in the 0" renewal interval. The cumulative reward
(with its mean subtracted) is cumbersome to express because it depends on whether one starts with an ON or OFF
period and upon what type of period Tt falls. All we need, however, is that its absolute value is bounded by Op,(1)T't
(here O,(1) < 1). The contribution of this term will be negligible. Indeed, by Markov’s inequality, for any € > 0,

PIO,()Tt I(Tt < 5(0)) > | < L P(S(0) > T

since here O,(1) < 1. Moreover, P(S(0) < T) = O(T~%=int1) as T — 00 if aumin = min(ay,as) < 2 (see (18) and
P(S(0)>T)=o0(1) as T — ¢ if amin = 2 (EU? < 00 = P(U > u) = o(u~2)). Since

T Y/eminQ (D)THI(Tt < S(0)) = O, (T~ H/emin)=amint2)y 0 a5 T — o0,

this term will not contribute to the limit. Therefore,

, Tt , K(Tt)
: —1/amin _ — : —1/amin
£ lim T /0 (W (u) — EW (u))du £ lim T ; J(k)
- K(Tt)
_ . K(T) 1/etmin —1/Qmin
= cm (50) e 2 I

1 1/min [Tt]
= £ lim TV emin N g (K
T—oo (Ml + Nz) Z

since K(T)/T — 1/p1 + po almost surely and K(Tt) ~ K(T)t ~ [K(T)t] — oo as T — oo, where [ ] denotes the

integer part (see [3], Theorem 7.3.2). The summands J(k) are given in (24) and are independent.

The conclusion now follows from standard results on limits of normalized sums of i.i.d. random variables:
[Tt]
£ lim T~V Z Uj(k) = £/ AY)

T—o0 50,1

t), =12, witho=C_%

if aj < 2. (See [7], Theorem 2.6.1 and the proof of Theorem 2.2.2 for the convergence of the one-dimensional
distributions). Convergence of the finite-dimensional distributions follows from the fact that the U;(k)’s are i.i.d.
Moreover, weak convergence holds in the Skorohod topology (see Skorohod [17]). In particular, if @ = a3 = ag, then

the limit is
1

- - 1/a1 (1) 1/a2 (2)
(11 + p2) ¥/ [ 2617 AL 51 (8) — a(,,l(t)]

where the Lévy stable motions A((I 2, 1 and A((f,z,’l are independent and C,0® = 1. These motions can be combined,
yielding (7) with a skewness parameter —1 < 8 < 1 given by (8) (see Samorodnitsky and Taqqu [16], Section 1.2).

The case a; = az = 2 is straightforward.

5 An Application: Synthetic Generation of Self-Similar Traffic Traces

One of the main implications of the mathematical results presented in Section 2 is that even though today’s network

traffic is intrinsically complex in nature, parsimonious modeling is still possible. Moreover, the results give rise to
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a physical explanation of the observed self-similar nature of LAN traffic, that is shown in [22] to be fully consistent
with actual traffic measurements from a LAN environment at the level of individual source-destination pairs. In fact,
the desire for a “phenomenological” explanation of self-similarity in LAN traffic has resulted in new insights into the
nature of traffic generated by the individual sources that contributed to the aggregate stream. We identified the Noah
Effect of the ON/OFF-periods of the individual source-destination pairs as an essential ingredient, thus describing an
important characteristic of the traffic in a “typical” LAN by essentially a single parameter, namely the intensity a of
the Noah Effect in the ON- and OFF-periods of a “typical” network host. Whether we consider an idealized setting
involving i.i.d. ON- and OFF-periods (see [21, Theorem 1]) or strictly alternating ON/OFF sources (see Section 2,
Theorem 1) is not important for this finding. Generalizations accommodating more realistic conditions are possible
(see Section 2), maintain the simplicity of the basic result, and may require the addition of only a small number of
physically meaningful parameters.

Explaining, and hence modeling self-similar phenomena in network traffic in terms of the superposition of many
ON/OFF sources with infinite variance distribution for the lengths of their ON/OFF-periods, leads to a straight-
forward method for generating long traces of self-similar traffic within reasonable (i.e., linear) time — assuming a
parallel computing environment. Indeed, the results are tailor-made for parallel computing: letting every processor
of a parallel machine generate traffic according to an alternating ON/OFF model (same «), simply adding (i.e.,
aggregating) the outputs over all processors produces self-similar traffic. For example, producing a synthetic trace
of length 100,000 on a MasPar MP-1216, a massively parallel computer with 16,384 processors, takes on the order
of a few minutes. In fact, Figure 1 shows the result of a simulation where we used this method to generate 27
hours worth of Ethernet-like traffic at the 10 millisecond time scale (i.e., a time series of approximately 10,000,000
observations). More precisely, our objective here was to experimentally “verify” our results in the context of the
August 1989 Ethernet LAN traffic measurements considered in [12, 13]; i.e., we chose a = 1.2 (corresponding to
the estimated Hurst parameter of H = 0.9 that is consistent with the August 1989 data set), M = 500 (number of
processors used to generate traffic, corresponding roughly to the number of active source-destination pairs during
the observed period), and strictly alternating ON/OFF sources with the same a-value for the distributions of the
ON- and OFF-periods. To check whether or not the resulting synthetic traffic trace “looks like” actual Ethernet
LAN traffic as measured in August 1989, we plot in Figure 1 (right most column) the synthetic trace on 5 different
time scales, the same way it was done in [13], the original traffic measurements (left most column), and a synthetic
trace (middle column) generated from an appropriately matched batch Poisson process (the latter was taken as
representative of traditional traffic modeling). As can be seen, our synthetic traffic passes the “visual” test easily,
with the possible exception of the plot in the top row (the effect of the diurnal cycle in the 27 hour trace of Ethernet
traffic on the 100s time scale becomes noticeable, especially because it is — by definition — not part of the stationary
model that gave rise to the top right plot). On a more rigorous level, the trace also fits the data well in a statistical
sense, i.e., the estimated Hurst parameter matches the one from the data and the marginals are approximately
Gaussian. Similarly striking agreement between synthetically generated traffic and actual Ethernet LAN traces was
obtained in a number of different scenarios, e.g., choosing M = 16,000 (close to the total number of processors on

the MasPar machine), allowing for different source types (see Theorem 2), selecting different a-values for the ON-
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Figure 1: Actual Ethernet traffic (left column), synthetic trace generated from an appropriately chosen traditional
traffic model (middle column), and synthetic trace generated from an appropriately chosen self-similar traffic model
with a single parameter (right column) — on five different time scales. Different gray levels indicate the same segments
of traffic on the different time scales.
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Figure 2: Textured plots of Ethernet traffic at the level of an individual source-destination pair: actual traffic (packet
arrival times) from an active source-destination pair (top panel), synthetic trace generated from an appropriately
chosen exponential ON/OFF source (middle panel), and synthetic trace generated from an appropriately chosen
ON/OFF source with infinite variance ON- and OFF-periods (bottom panel).

and OFF-period distributions (including different combinations of finite/infinite variance scenarios), and generating
under the i.i.d. and alternating renewal assumptions, respectively (see Section 2).

Recall that the Ethernet-like behavior of the synthetically generated trace in Figure 1 has essentially been accom-
plished with only one parameter, namely the intensity a of the Noah Effect for the ON/OFF-periods of the traffic
generated by a “typical” user. To be precise, since we use a Pareto distribution for the ON/OFF-periods, we require
an additional parameter indicating the lower cut-off of the Pareto distribution; yet another parameter governs the
rate at which packets are generated during an ON-period; and last but not least, the number of sources, M, is also
a parameter. While the cut-off and rate parameters are of minor importance, M plays, in general, a crucial role;
however, in the present context, M was always chosen to be “large” (e.g., 500, 16 000). We leave the interesting and
important problem of the quality of finite M-approximations to fractional Brownian motion or fractional Gaussian
noise for further studies. In any case, the Ethernet-like trace in Figure 1 is testimony to parsimonious modeling at
its best, and proof that today’s complex network traffic dynamics can be modeled and described in a simple manner
without requiring highly parameterized mathematical models. In fact, combining the insight gained from the new
theoretical results presented in Section 2 with the practical benefits of modern high-performance computing environ-
ments, the method illustrated above enables us to quickly generate long traces of realistic network traffic by imitating
on a small scale (using a multiprocessor environment) how traffic is generated on a large scale (i.e., in a real-life LAN,

without accounting in detail for the possible effects that the different protocols exhibit on the traffic dynamics). To
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emphasize this point, Figure 2 shows (using textured plots) traffic traces generated by different types of “typical”
ON/OFF sources: traffic generated by an actual source-destination pair during the busy hour of the August’89 data
set (top panel), synthetic traffic generated by an ON/OFF source with exponential ON- and OFF-periods, with
appropriately chosen means (matching the empirical means of the ON- and OFF-periods extracted from the trace
generated by the above source-destination pair using a threshold value of ¢ = 1s; see middle panel), and synthetic
traffic generated by an ON/OFF source with Pareto ON- and OFF-periods with indices a3 = 1.90 and as = 1.25,
respectively. A close look at Figure 2 reveals that exponential ON- and OFF-periods (middle panel) are unable
to capture the highly variable nature of an actual ON/OFF source (top panel); while in the exponential case, the
packets appear to arrive in a more or less uniform manner, the actual trace shows “gaps” (white areas) and “bursts”
(shaded or dotted areas) of all sizes and intensities. Simply by replacing the exponential distributions for the ON-
and OFF-periods by Pareto distributions results in a trace (bottom panel) that is practically indistinguishable from
the real traffic trace. Note that the ON-periods in all three plots have the same mean, and similarly, the means of
the OFF-periods in all three plots coincide. Figure 2 should be viewed as the source-destination equivalent of Figure
1, and they are closely tied together via the results in Section 2: aggregating over all actual source-destination pairs
that were active during the August ’89 measurement period results in actual aggregate Ethernet LAN traffic (Figure
1, left column), adding many exponential ON/OFF sources gives rise to the Poisson-like traffic dynamics displayed
in Figure 1 (middle column), and superimposing many Pareto ON/OFF sources yields synthetic traffic (Figure 1,

right column) that exhibits the same self-similar characteristics as measured Ethernet LAN traffic.

6 Conclusion

Motivated by the desire to provide a physical explanation for the empirically observed self-similarity property in
actual network traffic, we proposed in [22] to expand the range of traditional traffic modeling at the level of individual
sources (focusing mainly on the class of conventional ON/OFF source models with exponential or geometric ON-
and OFF-periods) to account for the Noah Effect, i.e., for the ability of individual sources to exhibit characteristics
that cover a wide range of time scales (“high-variability sources”). In this paper, we prove a fundamental result for
self-similar traffic modeling, namely that the superposition of many ON/OFF models, each of which exhibits the
Noah Effect, can yield aggregate packet streams that are consistent with measured LAN traffic and exhibits the same
self-similar or fractal properties as can be observed in the data. Moreover, extensive statistical analyses in [22] confirm
the presence of the Noah Effect in measured Ethernet LAN traffic at the source level, and demonstrate an appealing
robustness property that renders objections against packet train source models (e.g., lack of a clear definition of a
“train”, lack of suggestions for choosing the crucial model parameters, and lack of a physical interpretation) irrelevant.
The resulting new insights into the dynamics of actual LAN traffic is expected to facilitate the acceptance of self-
similar traffic models as viable and practically relevant alternatives to traditional models. The benefits for doing so
are immediate and include parsimonious and physically meaningful models for the seemingly very complex traffic
dynamics in today’s networks. As illustrated in Section 5, these physically-based models, in turn, give rise to novel
and highly efficient algorithms for synthetically generating long traces of self-similar network traffic. Moreover, by

combining the mathematical results proven in Section 2 with the capabilities of modern high-performance computing
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and communication, the resulting algorithm essentially imitates in the small (i.e., on a massively parallel machine)
how traffic is generated in the large (i.e., in a LAN) — ignoring the possible impact of the network on the traffic

sources (e.g., through the various protocols at the at the different network layers).
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