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Multifractal Processes

Rudolf H. Riedi

ABSTRACT
This paper has two main objectives. First, it develops the multifractal formalism in a

context suitable for both, measures and functions, deterministic as well as random, thereby
emphasizing an intuitive approach. Second, it carefully discusses several examples, such as
the binomial cascades and self-similar processes with a special eye on the use of wavelets.
Particular attention is given to a novel class of multifractal processes which combine the
attractive features of cascades and self-similar processes. Statistical properties of estimators
as well as modelling issues are addressed.

AMS Subject classification: Primary 28A80; secondary 37F40.

Keywords and phrases: Multifractal analysis, self-similar processes, fractional Brow-
nian motion, Lévy flights, α-stable motion, wavelets, long-range dependence, multifractal
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1 Introduction and Summary

Fractal processes have been instrumental in a variety of fields ranging from the theory of
fully developed turbulence [73, 64, 36, 12, 7], to stock market modelling [28, 68, 69, 80],
image processing [61, 21, 104], medical data [2, 98, 11] and geophysics [36, 65, 47, 92]. In
networking, models using fractional Brownian motion (fBm) have helped advance the
field through their ability to assess the impact of fractal features such as statistical self-
similarity and long-range dependence (LRD) to performance [60, 81, 90, 89, 96, 34, 88].

Roughly speaking, a fractal entity is characterized by the inherent, ubiquitous oc-
currence of irregularities which governs its shape and complexity. The most prominent
example is certainly fBm BH(t) [71]. Its paths are almost surely continuous but not
differentiable. Indeed, the oscillation of fBm in any interval of size δ is of the order δH

where H ∈ (0, 1) is the self-similarity parameter:

BH(at)
fd
= aHBH(t). (1.1)

Reasons for the success of fBm as a model of LRD may be seen in the simplicity of its
scaling properties which makes it amendable to analysis. The fact of being Gaussian
bears further advantages. However, the scaling law (1.1) implies also that the oscil-
lations of fBm at fine scales are uniform∗ which comes as a disadvantage in various
situations (see Figure 1). Real world signals often possess an erratically changing os-
cillatory behavior (see Figure 2) which have earned them the name multifractals, but
which also limits the appropriateness of fBm as a model. This rich structure at fine
scales may serve as a valuable indicator, and ignoring it might mean to miss out on
relevant information (see references above).

This paper has two objects. First, we present the framework for describing and
detecting such a multifractal scaling structure. Doing so we survey local and global
multifractal analysis and relate them via the multifractal formalism in a stochastic
setting. Thereby, the importance of higher order statistics will become evident. It might
be especially appealing to the reader to see wavelets put to efficient use. We focus
mainly on the analytical computation of the so-called multifractal spectra and on their
mutual relations. Thereby, we emphasize issues of observability by striving for formulae
which hold for all or almost all paths and by pointing out the necessity of oversampling
needed to capture certain rare events. Statistical properties of estimators of multifractal
quantities as well as modelling issues are addressed elsewhere (see [41, 3, 40] and
[68, 89, 88]).

Second, we carefully discuss basic examples as well as Brownian motion in multi-
fractal time, B1/2(M(t)). This process has recently been suggested as a model for stock
market exchange by Mandelbrot who argues that oscillations in exchange rates occur
in multifractal ‘trading time’ [68, 69]. With the theory developed in this paper, it be-
comes an easy task to explore B1/2(M(t)) from the multifractal point of view, and with

∗This property is also known as the Lv́ey modulus of continuity in the case of Brownian
motion. For fBm see [5, Thm. 8.3.1.].
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FIGURE 1. Fractional Brownian motion, as well as its increment process called fGn (displayed
on top in T5), has only one singularity exponent h(t) = H, a fact which is represented in
the linear partition function τ (see T2) and a multifractal spectrum (see T3) which consists
of only one point: for fBm (H, 1) and for fGn (H − 1, 1). For further details on the plots see
(1.9), (1.6) and Figure 7.

little more effort also more general multifractal ‘subordinators’. The reader interested
in these multifractal processes may wish, at least at first reading, to content himself
with the notation introduced on the following few pages, skip the sections which deal
more carefully with the tools of multifractal analysis, and proceed directly to the last
sections. The remainder of this introduction provides a summary of the contents of the
paper, following roughly its structure.

1.1 Singularity Exponents

In this work, we are mainly interested in the geometry or local scaling properties
of the paths of a process Y (t). Therefore, all notions and results concerning paths
will apply to functions as well. The study of fine scale properties of functions (as
opposed to measures) has been pioneered in the work of Arneodo, Bacry and Muzy
[7, 78, 79, 1, 2, 80], who were also the first to introduce wavelet techniques in this
context. For simplicity of the presentation we take t ∈ [0, 1]. Extensions to the real line
IR as well as to higher dimensions, being straightforward in most cases, are indicated.

A typical feature of a fractal process Y (t) is that it has a non-integer degree of
differentiability, giving rise to an interesting analysis of its local Hölder exponent H(t)
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FIGURE 2. Real world signals such as this geophysical data often exhibit erratic behavior
and their appearance may make stationarity questionable. One such feature are ‘trends’
which sometimes can be explained by strong correlations (LRD). Another such feature are
the sudden jumps or ‘bursts’ which in turn are a typical for multifractals. For such signals
the singularity exponent h(t) depends erratically on time t, a fact which is reflected in the
concave partition function τ (see T2) and a multifractal spectrum (see T3) which extends
over a non-trivial range of singularity exponents.

which is roughly defined through

|Y (t′)− P (t′)| ' |t′ − t|H(t) (1.2)

for some polynomial P which in nice cases is simply the Taylor polynomial of Y at t.
A rigorous definition is given in (2.1).

Provided the polynomial is constant,H(t) can be obtained from the limiting behavior
of the so-called coarse Hölder exponents, i.e.,

hε(t) =
1

log ε
log sup

|t′−t|<ε

|Y (t′)− Y (t)|. (1.3)

For rigorous statements we refer to (2.2) and lemma 2.3.
However, as the example t2+t2.7 shows, the use of hε(t) is ineffective in the presence of

polynomial trends. Then, hε(t) will reflect the lowest non-constant term of the Taylor
polynomial of Y at t. For this reason, and also to avoid complications introduced
through the computation of the supremum in (1.3), one may choose to employ wavelet
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decompositions or other tools of time frequency analysis. Properly chosen wavelets are
blind to polynomials and due to their scaling properties they contain information on
the Hölder regularity of Y [51, 23]. Their application in multifractal estimation has
been pioneered by [7, 53, 30]. Furthermore, wavelets provide unconditional basis for
several regularity spaces such as Besov spaces (see (2.14) and (6.2)) whence their use
bears further advantages.

Yet, the ‘classical’ choice of a singularity exponent is

α
(n)
k =

1

−n log 2
log
(

M((k + 1)2−n)−M(k2−n)
)

. (1.4)

It is attractive due to its simplicity and becomes actually quite powerful when studying
monotonously increasing processes M(t), in particular the distribution functions of
singular measures, such as cascades.

In this chapter we will introduce the exponents w
(n)
k emerging from a wavelet based

analysis and elaborate on the relation between these different singularity exponents
h
(n)
k , α

(n)
k and w

(n)
k .

1.2 Multifractal Spectra

As indicated we are mainly interested in the geometry or local regularity of the paths
of Y (t). Let us fix such a realization for the time-being.

Local analysis

Ideally, one would like to quantify in geometrical as well as statistical sense which
values H(t) appear on a given path of the process Y , and how often one will encounter
them. Towards the first description one studies the sets

E
[a]
h = {t : H(t) = a} (1.5)

for varying a. Similarly, one could consider sets E
[a]
α and E

[a]
w defined through the

limiting behavior of the singularity exponents α
(n)
k or w

(n)
k , respectively. If no confusion

regarding the choice of h
(n)
k , w

(n)
k or α

(n)
k can arise, we simply drop the index.

The sets E [a] form a decomposition of the support of Y according to its singularity
exponents. We say that Y has a rich multifractal structure if these sets E [a] are highly
interwoven, each lying dense on the line. Typically, only one of the E [a] has full Lebesgue
measure, while the others form dusts, more precisely, sets with non-integer Hausdorff
dimension dim(E [a]) [32]. Dimensions are always positive, and the smaller the dimension
of a set the ‘thinner’ the set. In this sense, the function

a 7→ dim(E [a]) (1.6)

gives a compact representation of the complex singularity structure of Y . It has been
termed the multifractal spectrum of Y and is studied extensively in the ‘classical’ liter-
ature.
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To develop some intuition let us consider a differentiable path. To avoid trivialities
let us assume that this path and its derivative have no zeros. Then, dim(E [a])-spectrum
reduces to the point (1, 1). On the other hand, if H(t) is continuous and not constant
on intervals then each E [a] is finite and dim(E [a]) = 0 for all a in the range of H(t).
A spectrum dim(E [a]) with non-degenerate form is, thus, indeed indication for rich
singularity behavior. By this we mean that H(t) changes erratically with t and takes
each value a on a rather large set E [a].

Global analysis

A simpler way of capturing the complex structure of a signal is obtained when adapting
the concept of box-dimension to the multifractal context. As the name indicates, one
aims at an estimate of dim(E [a]) by counting the intervals – or boxes – over which Y
increases roughly with the ‘right’ Hölder exponent. Therefore, we need to introduce
grain exponents, a discrete approximation to hε(t) (see (1.3)):

h
(n)
k := −(1/n) log2 sup{|Y (s)− Y (t)| : (k − 1)2−n ≤ s ≤ t ≤ (k + 2)2−n} (1.7)

and define the grain (multifractal) spectrum as [73, 46, 45, 91]

f(a) = lim
ε→0

lim sup
n→∞

logN (n)(a, ε)

n log 2
, (1.8)

where N (n)(a, ε) = #{k : |h(n)k −a| < ε} counts, how many of the grain exponents h
(n)
k

are approximately equal to a. Similarly, one may define such spectra for the singularity
exponents α

(n)
k and w

(n)
k . If confusion may arise, we will indicate the chosen exponent

by writing explicitly fh(a), fα(a), or fw(a).
This multifractal spectrum can be interpreted (at least) in three ways. First, as

mentioned already it is related to the notion of dimensions. Indeed, a simple argument
shows that dim(E [a]) ≤ f(a) [94]. The essential ingredient for a proof is the fact that the
calculation of dim(E [a]) involves finding an optimal covering of E [a] while f(a) considers
only uniform covers. In short, f(a) provides an upper bound on the dimension and,
thus, the ‘size’ of the sets E [a].

Second, (1.8) suggests that the re-normalized histograms (1/n) log2N
(n)(a, ε) should

all be roughly equal at small scales 2−n to the scale independent f(a). It should be
remembered that this is foremost (by definition) a property of the paths of the given
process. We stress this point because it is tempting to argue that –at least under suitable
ergodicity assumptions– one should see the marginal distribution of h

(n)
k reflected in f .

However, one should not overlook that the logarithmic re-normalization implemented in
f(a) is aimed at detecting exponential scaling properties rather than the marginals on
multiple scales themselves. For fBm (see (1.1)) this re-normalization indeed causes all
details of the Normal multi-scale marginals to be washed out into a virtually structure-
less f(a) which gives notice of the presence of only one scaling law, the self-similarity
(1.1) with parameter H. Thus, f expresses that fBm is ‘mono-fractal’, as mentioned
above. To the contrary with ‘multi-fractal’ processes such as multiplicative cascades,
for which f reflects the presence of an entire range of scaling exponents (see (5.32)).
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The third natural context for the coarse spectrum f is that of Large Deviation
Principles (LDP) [29, 91]. Indeed, N (n)(a, ε)/2n defines a probability distribution† on

{h(n)k : k = 0, . . . , 2n − 1}. Alluding to the Law of Large Numbers (LLN) we may
expect this distribution to be concentrated more and more around the ‘most typical’
or ‘expected’ value as n increases. The spectrum f(a) measures how fast the chance
N (n)(a, ε)/2n to observe a ‘deviant’ value a decreases, i.e., N (n)(a, ε)/2n ' 2f(a)−1.

The close connection to LDP leads one to study the scaling of ‘sample moments’
through the so-called partition function [45, 46, 36, 91]

τh(q) := lim inf
n→∞

log S
(n)
h (q)

−n log 2
where S

(n)
h (q) :=

2n−1
∑

k=0

2−nqh
(n)
k , (1.9)

which are defined for all q ∈ IR. Similarly, replacing h
(n)
k by α

(n)
k , one defines τα(q) and

S
(n)
α (q). The latter takes on the well-known form of a partition sum

S(n)α (q) = 2−nqα
(n)
k =

2n−1
∑

k=0

∣

∣Y
(

(k + 1)2−n
)

− Y (k2−n)
∣

∣

q
. (1.10)

Again similarly, one defines τw(q) and S
(n)
w (q) by replacing h

(n)
k by wavelet based ex-

ponents w
(n)
k (see (2.11)). Again, if no confusion on the choice of h

(n)
k , w

(n)
k or α

(n)
k can

arise, we simply drop the index h, α or w .

1.3 Multifractal Formalism

The theory of LDP suggests f(a) and τ(q) are strongly related since 2−nS(n)(q) is the

moment generating function of the random variable An(k) := −nh
(n)
k ln(2) (recall foot-

note †). For a motivation of a formula connection f(a) and τ(q) consider the heuristics

S(n)(q) =
∑

a

∑

h
(n)
k
'a

2−nqh
(n)
k '

∑

a

2nf(a)2−nqa =
∑

a

2−n(qa−f(a)) ' 2−n infa(qa−f(a)).

Assuming that
∑

a has only finite many terms the last step simply replaces the sum by
its strongest term. Making this entire argument rigorous we prove in this paper that

τ(q) = f ∗(a) := inf
a
(qa− f(a)). (1.11)

Here (·)∗ denotes the Legendre transform which is omnipresent in the theory of LDP.
Indeed, by applying a theorem due to Gärtner and Ellis [27] and imposing some reg-
ularity on τ(q) theorem 3.5 shows that the family of probability densities defined by
N (n)(a, ε)/2n satisfies the full LDP [26] with rate function f meaning that f is actually
a double-limit and f(a) = τ ∗(a). Corollary 4.5 establishes that always

f(a) = τ ∗(a) = qa− τ(q) at points a = τ ′(q). (1.12)

†Recall that we fixed a path of Y . Randomness is here understood in choosing k.
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Going through some of the explicitly calculated examples in Section 5.5 will help de-
mystify the Legendre transform. A tutorial on the Legendre transform in contained in
Appendix A of [89].

From (1.11) follows, that f(a) ≤ f ∗∗(a) = τ ∗(a) and also that τ(q) is a concave
function, hence continuous and almost everywhere differentiable.

1.4 Deterministic Envelope

So far, all that has been said applies to any given function or path of a process. In the
random case, one would often like to use a simple analytical approach in order to gain
intuition or an estimate of f for a typical path of Y .

To this end we formulate a LDP for the sequence of distributions of {h(n)k } where
randomness enters now through choosing k ∈ {0, . . . , 2n − 1} as well as through the
randomness of the process itself, i.e., through Yt(ω) where ω lies in the probability

space (Ω, PΩ). The moment generating function of An(k, ω) = −nh
(n)
k (ω) ln(2) with k

and ω random is 2−nIEΩ[S
(n)(q)]. This leads to defining the ‘deterministic envelope’:

T (q) := lim inf
n→∞

−1

n
log2 IEΩS

(n)(q) (1.13)

and the corresponding ‘rate function’ F (see (3.23)). As with the pathwise f(a) and
τ(q) we have here again T (q) = F ∗(q). More importantly, it is easy to show that
τ(q, ω) ≥ T (q) almost surely (see lemma 3.9). Thus:

Corollary 1.1. With probability one the multifractal spectra are ordered as follows: for
all a

dim(E [a]) ≤ f(a) ≤ τ ∗(a) ≤ T ∗(a), (1.14)

provided that they are all defined in terms of the same singularity exponent.

Great effort has been spent on investigating under which assumptions equality holds
between some of the spectra, as a matter of fact mostly between spectra based on differ-
ent scaling exponents. Indeed, the most interesting combinations seem to be dim(E [a])

with scaling exponents h
(n)
k and α

(n)
k , and τ ∗(a) with scaling exponents w

(n)
k and α

(n)
k ,

the former for its importance in the analysis of regularity, the latter for its numerical
relevance. It has become the accepted term in the literature to say that the multifractal
formalism holds if any such spectra are equal; indeed they are in a generic sense [52].
However, this terminology might sometimes be confusing if the nature of the parts of
such an equality is not indicated. We prefer here to call (1.14) the multifractal formal-
ism: this formula ‘holds’ for any fixed choice of a singularity exponent as is shown in
the paper.

1.5 Self-similarity and LRD

The statistical self-similarity as expressed in (1.1) makes fBm, or rather its increment
process a paradigm of long range dependence (LRD). To be more explicit let δ denote
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some fixed lag and define fractional Gaussian noise (fGn) as

G(k) := BH((k + 1)δ)−BH(kδ). (1.15)

Having the LRD property means that the auto-correlation rG(k) := IEΩ[G(n+k)G(n)]
decays so slowly that

∑

k rG(k) = ∞. The presence of such strong dependence bears
an important consequence on the aggregated processes

G(m)(k) :=
1

m

(k+1)m−1
∑

i=km

G(i). (1.16)

They have a much higher variance, and variability, than would be the case for a
short range dependent process. Indeed, if X(k) are i.i.d., then X (m)(k) has variance
(1/m2)var(X0+. . .+Xm−1) = (1/m)var(X). For G we find, due to (1.1) and BH(0) = 0,

var(G(m)(0)) = var

(

1

m
BH(mδ)

)

= var

(

mH

m
BH(δ)

)

= m2H−2var (G(0)) . (1.17)

For H > 1/2 this expression decays indeed much slower than 1/m. As is shown in [19]
var(X(m)) ' m2H−2 is equivalent to rX(k) ' k2H−2 and so, G(k) is indeed LRD for
H > 1/2 (this follows also directly from (7.3)).

Let us demonstrate with fGn how to relate LRD with multifractal analysis using only
that it is a zero-mean processes, not (1.1). To this end let δ = 2−n denote the finest
resolution we will consider, and let 1 be the largest. For m = 2i (0 ≤ i ≤ n) the process
mG(m)(k) becomes simply BH((k+1)mδ)−BH(kmδ) = BH((k+1)2i−n)−BH(k2

i−n).
But the second moment of this expression —which is also the variance— is exactly
what determines Tα(2) (compare (1.10)). More precisely, using stationarity of G and
substituting m = 2i, we get

2−(n−i)Tα(2) ' IEΩ
[

Sn−iα (2)
]

=
2n−i−1
∑

k=0

IEΩ
[

|mG(m)(k)|2
]

= 2n−i22ivar
(

G(2
i)
)

. (1.18)

This should be compared with the definition of the LRD-parameter H via

var(G(m)) ' m2H−2 or var(G(2
i)) = 2i(2H−2). (1.19)

At this point a conceptual difficulty arises. Multifractal analysis is formulated in the
limit of small scales (i→ −∞) while LRD is a property at large scales (i→∞). Thus,
the two exponents H and Tα(2) can in theory only be related when assuming that
the scaling they represent is actually exact at all scales, and not only asymptotically.
When this assumption is violated, the two approaches may provide strikingly different
answers (compare Example 7.2).

In any real world application, however, one will determine both, H and Tα(2), by
finding a scaling region i ≤ i ≤ i in which (1.18) and (1.19) hold up to satisfactory
precision. Comparing the two scaling laws in i yields Tα(2) + 1− 2 = 2H − 2, or

H =
Tα(2) + 1

2
. (1.20)
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This formula expresses most pointedly, how multifractal analysis goes beyond second
order statistics: in (1.26) we compute with T (q) the scaling of all moments. The formula
(1.20) is derived here for zero-mean processes, but can be put on more solid grounds
using wavelet estimators of the LRD parameter [4] which are more robust than the ones
obtained through variance of the increment process. The same formula (1.20) reappears
also for multifractals, suggesting that it has some ‘universal truth’ to it, at least in the
presence of ‘perfect scaling’ (see (1.29) and (7.25), but also Example 7.2).

1.6 Multifractal Processes

The most prominent examples where one finds coinciding, strictly concave multifractal
spectra are the distribution functions of cascade measures [64, 56, 15, 33, 6, 82, 49, 91,
95, 86] for which dim(E [a]) and T ∗(a) are equal and have the form of a ∩ (see Figure 6
and also 3 (e)). These cascades are constructed through some multiplicative iteration
scheme such as the binomial cascade, which is presented in detail in the paper with
special emphasis on its wavelet decomposition. Having positive increments, however,
this class of processes is sometimes too restrictive. fBm, as noted, has the disadvantage
of a poor multifractal structure and does not contribute to a larger pool of stochastic
processes with multifractal characteristics.

It is also notable that the first ‘natural’, truly multifractal stochastic process to be
identified was Lévy motion [54]. This example is particularly appealing since scaling
is not injected into the model by an iterative construction (this is what we mean by
the term natural). However, its spectrum is, though it shows a non-trivial range of
singularity exponents H(t), degenerated in the sense that it is linear.

Construction and Simulation

With the formalism presented here, the stage is set for constructing and studying new
classes of truly multi-fractional processes. The idea, to speak in Mandelbrot’s own
words, is inevitable after the fact. The ingredients are simple: a multifractal ‘time
warp’, i.e., an increasing function or processM(t) for which the multifractal formalism
is known to hold, and a function or process V with strong mono-fractal scaling prop-
erties such as fractional Brownian motion (fBm), a Weierstrass process or self-similar
martingales such as Lévy motion. One then forms the compound process

V(t) := V (M(t)). (1.21)

To build an intuition let us recall the method of midpoint displacement which can
be used to define simple Brownian motion B1/2 which we will also call Wiener mo-
tion (WM) for a clear distinction from fBm. This method constructs B1/2 iteratively
at dyadic points. Having constructed B1/2(k2

−n) and B1/2((k + 1)2−n) one defines
B1/2((2k+1)2−n−1) as (B1/2(k2

−n) +B1/2((k+1)2−n))/2+Xk,n. The off-sets Xk,n are
independent zero mean Gaussian variables with variance such as to satisfy (1.1) with
H = 1/2. Thus the name of the method. One way to obtain Wiener motion in multi-
fractal time WM(MF) is then to keep the off-set variables Xk,n as they are but to apply
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them at the time instances tk,n defined by tk,n =M−1(k2−n), i.e., M(tk,n) = k2−n:

B1/2(t2k+1,n+1) :=
B1/2(tk,n) + B1/2(tk+1,n)

2
+Xk,n. (1.22)

This amounts to a randomly located random displacement, the location being deter-
mined by M. Indeed, (1.21) is nothing but a time warp.

An alternative construction of ‘warped Wiener motion’ WM(MF) which yields an
equally spaced sampling as opposed to the samples B1/2(tk,n) provided by (1.22) is
desirable. To this end, note first that the increments of WM(MF) become independent
Gaussians once the path of M(t) is realized. To be more precise, fix n and let

G(k) := B((k + 1)2−n)− B(k2−n) = B1/2(M(k + 1)2−n))−B1/2(M(k2−n)). (1.23)

For a sample path of G one starts by producing first the random variables M(k2−n).
Once this is done, the G(k) simply are independent zero-mean Gaussian variables with
variance |M(k + 1)2−n))−M(k2−n)|. This procedure has been used in Figure 3.

Global analysis

For the right hand side (RHS) of the multifractal formalism (1.14), we need only to
know that V is an H-sssi process, meaning that the increment V (t+u)−V (t) is equal
in distribution to uHV (1) (compare (1.1)). Assuming independence between V andM
a simple calculation reads as

IEΩ

2n−1
∑

k=0

|V((k + 1)2−n)− V(k2−n)|q

=
2n−1
∑

k=0

IEIE
[

|V (M((k + 1)2−n))− V (M(k2−n))|q
∣

∣

∣M(k2−n),M((k + 1)2−n)
]

=
2n−1
∑

k=0

IE
[

|M((k + 1)2−n)−M(k2−n)|qH
]

IE [|V (1)|q] . (1.24)

Here, we dealt with increments |V((k+1)2−n)−V(k2−n)| for the ease of notation. With

little more effort they can be replaced by suprema, i.e., by 2−nh
(n)
k , or even by 2−nw

(n)
k

for certain wavelet coefficients and under appropriate assumptions (see theorem 8.5).

It follows, e.g., for h
(n)
k , that

Warped H-sssi: Th,V(q) =

{

Th,M(qH) if IEΩ
[

| sup0≤t≤1 V (t)|q
]

<∞
−∞ else.

(1.25)

Simple H-sssi process: When choosing the deterministic warp time M(t) = t we

have TM(q) = q − 1 since S
(n)
M (q) = const2n · 2−nq for all n. Also, V = V . We obtain

TM(qH) = qH − 1 which has to be inserted into (1.25) to obtain

Simple H-sssi: Th,V (q) =

{

qH − 1 if IEΩ
[

| sup0≤t≤1 V (t)|q
]

<∞
−∞ else.

(1.26)
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Local analysis of warped fBm

Let us now turn to the special case where V is fBm. Then, we use the term FB(MF) to
abbreviate fractional Brownian motion in multifractal time: B(t) = BH(M(t)). First,
to obtain an intuition on what to expect from the spectra of B let us note that the
moments appearing in (1.25) are finite for all q as we will see in lemma 7.4. Applying
the Legendre transform yields easily that

T ∗B(a) = inf
q
(qa− TB(q)) = inf

q
(qa− TM(qH)) = T ∗M(a/H), (1.27)

which is valid for all a ∈ IR for which the second equality holds, i.e., for which the
infimum is attained for q values in the range where TB(q) is finite. In particular, for
Brownian motion (fBm with H = 1/2) it holds for all a (compare lemma 7.4).
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FIGURE 3. Left: Simulation of Brownian motion in binomial time (a) Sampling of
Mb((k + 1)2−n) − Mb(k2

−n) (k = 0, . . . , 2n − 1), indicating distortion of dyadic
time intervals (b) Mb((k2

−n)): the time warp (c) Brownian motion warped with (b):
B(k2−n) = B1/2(Mb(k2

−n))

Right: Estimation of dim(E
[a]
B ) via τ∗w,B (d) Empirical correlation of the Haar wavelet coeffi-

cients. (e) Dot-dashed: T ∗Mb
(from theory), dashed: T ∗B(a) = T ∗Mb

(a/H) Solid: the estimator
τ∗w,B obtained from (c). (Reproduced from [40].)

Second, towards the local analysis we recall the uniform and strict Hölder continuity
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of the paths of fBm. In theorem 7.3 we state a precise result due to Adler [5] which
reads roughly as

sup
|u|≤δ

|B(t+ u)−B(t)| = sup
|u|≤δ

|BH(M(t+ u))−BH(M(t))| ' sup
|u|≤δ

|M(t+ u)−M(t)|H .

This is the key to conclude that BH simply squeezes the Hölder regularity exponents
by a factor H. Thus,

hB(t) = H · hM(t), E
[a/H]
M = E

[a]
B ,

and, consequently, analogous to (1.27),

dim(E
[a]
B ) = dim(E

[a/H]
M ).

Figure 3 (d)-(e) displays an estimation of dim(E
[a]
B ) using wavelets which agrees very

closely with the form dim(E
[a/H]
M ) predicted by theory. (For statistics on this estimator

see [40, 41].)
Combining this with corollary 1.1 and (1.27) we may conclude:

Corollary 1.2 (Fractional Brownian Motion in Multifractal Time).
Let BH denote fBm of Hurst parameter H. Let M(t) be of almost surely continuous
paths and independent of BH . Set B(t) = BH(M(t)) and consider a multifractal anal-

ysis using h
(n)
k . Then, the multifractal warp formalism

dim(E
[a]
B ) = fB(a) = τ ∗B(a) = T ∗B(a) = T ∗M(a/H) (1.28)

holds for any path and any a for which dim(E
[a/H]
M ) = T ∗M(a/H) = T ∗B(a).

The condition on a ensures that equality holds in the multifractal formalism for M
and that the relevant moments are finite so that (1.27) holds. If satisfied, then the

local, or fine, multifractal structure of B captured in dim(E
[a]
B ) on the left side in (1.28)

can be estimated through grain based, simpler and numerically more robust spectra
on the right side, such as τ ∗B(a) (compare Figure 3 (e)).

Moreover, the ‘warp formula’ (1.28) is appealing since it allows to separate the LRD
parameter of fBm and the multifractal spectrum of the time change M. Indeed, pro-
vided that M is almost surely increasing one has TM(1) = 0 since S(n)(0) = M(1)
for all n. Thus, TB(1/H) = 0 exposes the value of H. Alternatively, the tangent at T ∗B
through the origin has slope 1/H. Once H is known T ∗M follows easily from T ∗B.
Simple fBm:When choosing the deterministic warp timeM(t) = t we have B = BH

and TBH (q) = qH−1 as in (1.26). In the special case of Brownian motion (H = 1/2) we

may apply (1.28) for all a showing that all h
(n)
k -based spectra consist of the point (H, 1)

only. This makes the mono-fractal character of this process most explicit. In general,
however, artifacts which are due mainly to diverging moments may distort this simple
picture (see Section 7.3).



14 R. H. Riedi, Multifractal Processes

LRD and estimation of warped Brownian motion

Let G(k) := B((k+1)2−n)−B(k2−n) be ‘fGn in multifractal time’ (see (1.23) for the case
H = 1/2). Calculating auto-correlations explicitly, lemma 8.8 shows that G is second
order stationary providedM has stationary increments. Assuming IE[M(s)2H ] = const·
sT (2H)+1, the correlation of G is of the form of ordinary fGn, but decaying as rG(k) '
k2HG−2 where

HG =
TM(2H) + 1

2
. (1.29)

Let us discuss some special cases. An obvious choice for a subordinatorM is Lévy mo-
tion, an H ′-self-similar, 1/H ′-stable process. It has independent, stationary increments.
Since the relation (1.1) holds with H ′ as the scaling parameter, we have T (q) = qH ′−1
from (1.26). Moreover, M(s)2H is equal in distribution to (sH

′

M(1))2H and indeed
IE[M(s)2H ] = const · s2HH

′

= const · sT (2H)+1. This expression is finite for 2H < 1/H ′.
In summary, HG = HH ′ < 1/2.

For a continuous, increasing warp time M, on the other hand, we have always
TM(0) = −1 and TM(1) = 0. (Lévy motion is discontinuous; it is increasing for H ′ < 1,
in which case T (1) is not defined.) Exploiting the concave shape of TM we find that
H < HG < 1/2 for 0 < H < 1/2, and 1/2 < HG < H for the LRD case 1/2 < H < 1.

Especially in the case of H = 1/2 (‘white noise in multifractal time’) G(k) becomes
uncorrelated (see also (8.20)). Notably, this is a stronger statement than the observation
that the G(k) are independent conditioned onM (compare Section 1.6). As a particular
consequence, wavelet coefficients will decorrelate fast for the compound process G, not
only when conditioning onM (compare Figure 3 (d)). This is favorable for estimation
purposes as it reduces the error variance. Finally, for increasing M we have T (1) = 0
and the requirements for (1.29) reduce to the simple IE[M(s)] = s. Multiplicative
processes with this property (as well as stationary increments) have been introduced
recently [14, 70, 74, 105].

Though seemingly obvious it should be pointed out that the vanishing correlations
of G in the case H = 1/2 should not be taken as an indication of independence. After
all, G becomes Gaussian only when conditioning on knowingM. A strong, higher order
dependence in G is hidden in the dependence of the increments ofM which determine
the variance of G(k) as in (1.23). Indeed, Figure 3 (c) shows clear phases of monotony
of B indicating positive dependence in its increments G, despite vanishing correlations.
Mandelbrot calls this the ‘blind spot of spectral analysis’.

Multifractals in multifractal time

Despite of its simplicity the presented scheme for constructing multifractal processes
allows for various play-forms some of which are little explored. First of all, for simulation
purposes one might subject the randomized Weierstrass-Mandelbrot function to time
change rather than fBm itself.

Next, we may choose to replace fBm with a more general self-similar process (7.1)
such as Lévy motion. Difficulties arise here since Lévy motion is itself a multifractal
with varying Hölder regularity and the challenge lies in studying which exponents of
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the ‘multifractal time’ and the motion are most likely to meet. A solution for the
spectrum f(a) is given in corollary 8.13 which actually applies to arbitrary processes Y
with stationary increments (compare theorem 8.15) replacing fBm. In its most compact
form our result reads as:

Corollary 1.3 (Lévy motion in multifractal time). Let LH denote Lévy stable
motion and let M be a binomial cascade (see 5.1) independent of LH and set V(t) =
LH(M(t)). Then, for almost all paths

fV(a) = τ ∗V(a)
a.s.
= T ∗V(a) (1.30)

for all α where T ∗V > 0. The envelope T ∗V can be computed through the warp formula

TV(q) = TM

(

TLH (q) + 1
)

. (1.31)

Recall (1.26) for a formula of TLH , which is generalized in (7.10). As the paper shows
(1.30) and (1.31) hold actually in more generality.

Finally, for Y(t) = Y (M(t)) where Y andM are both almost surely increasing, i.e.,
multifractals in the classical sense, a close connection to the so-called ‘relative multi-
fractal analysis’ [95] can be established using the concept of inverse multifractals [94]:
understanding the multifractal structure of Y is equivalent to knowing the multifractal
spectra of Y with respect to M−1, the inverse function of M. We will show how this
can be resolved in the simple case of binomial cascades.

2 Singularity Exponents

For simplicity we consider processes Y over a probability space (Ω,F , PΩ) and defined
on a compact interval, which we assume without loss of generality to be [0, 1]. Gen-
eralization to higher dimensions is straightforward and extending to processes defined
on IR is simple and will be indicated.

2.1 Hölder Continuity

As pointed out in the introduction, the erratic behavior of a continuous process Y (t)
maybe indicative of crucial properties with relevance in various applications. This local
behavior of Y at a given time t can be characterized to a first approximation by
comparison with an algebraic function as follows:

Definition 2.1. A function or the path of a process Y is said to be in Ch
t if there is a

polynomial Pt such that
|Y (u)− Pt(u)| ≤ C|u− t|h

for u sufficiently close to t. Then, the degree of local Hölder regularity of Y at t is

H(t) := sup{h : Y ∈ Ch
t }. (2.1)
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As usual, let bxc denote the largest integer smaller or equal to x. If the Taylor
polynomial of degree bH(t)c exists, then P is necessarily that Taylor polynomial. As
the example Y (t) = 1+ t+ t2+ t3.5 sin(1/t) shows, P may be different from the Taylor
polynomial if Y does not have sufficient degree of smoothness. Here, Y (t) has only
one derivative at t = 0, and its Taylor polynomial at t = 0 is u 7→ 1 + u while
P0(u) = 1 + u+ u2.

Of special interest for our purpose is the case when the approximating polynomial
Pt is a constant, i.e., Pt(u) = Y (t), in which case H(t) can be computed easily. To this
end:

Definition 2.2. Let us agree on the convention log(0) = −∞ and set

h(t) := lim inf
ε→0

1

log2(2ε)
log2 sup

|u−t|<ε

|Y (u)− Y (t)|. (2.2)

Note first that for any h < h(t) we have |Y (u) − Y (t)| ≤ C|u − t|h, thus Y ∈ Ch
t .

We conclude that always
h(t) ≤ H(t). (2.3)

It is easy to see that if Pt is known to be a constant then H(t) = h(t). On the other
hand, we show:

Lemma 2.3. If h(t) /∈ IIN then Pt is a constant, and h(t) = H(t).

As the example Y (t) = t2+ t2.4 shows the conclusion does not necessarily hold when
h(t) ∈ IIN.
Proof
We will show the dual statement: If H(t) > h(t) then h(t) must be an integer. Together
with (2.3) this will certainly establish the lemma.

So, we assume H(t) > h(t). Then there is h > h(t) and a polynomial Pt(·) such that
|Y (u)−Pt(u)| ≤ C|u− t|h. Note that Pt cannot be a constant: if it were constant, then
h ≤ h(t) due to the very definition of h(t). Thus, we may write the error-minimizing
polynomial as Pt(u) = Y (t)+(u−t)m·Q(u) for some integerm ≥ 1 and some polynomial
Q without zero at t. Assume first that m < h(t) and choose h′ such that m < h′ < h(t).
Writing Y (u)− Pt(u) = (Y (u)− Y (t))− (Pt(u)− Y (t)), the first term is smaller than
|u− t|h

′

and the second term, decaying as C|u− t|m, governs. Whence h = m < h(t),
a contradiction against the assumption h > h(t). Assuming m > h(t) choose h′ such
that m > h′ > h(t) and a sequence un such that |Y (un) − Y (t)| ≥ |un − t|h

′

. Then,
|Y (un) − Pt(un)| ≥ (1/2)|un − t|h

′

for large n and h ≤ h′. Letting h′ → h(t) we get
again a contradiction. We conclude that h(t) equals m. ♦

An essential simplification for both, analytical and empirical study, is to replace the
continuous limit in (2.2) by a discrete one. To this end we introduce some notation

Definition 2.4. Let kn(t) := bt2
nc. Then, kn(t) is the unique integer such that

t ∈ I(n)kn
:= [kn2

−n, (kn + 1)2−n[. (2.4)
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As n increases the intervals I
(n)
k form a nested decreasing sequence (compare Fig-

ure 4). Now, when defining a discrete approximation to h(t) we have to imitate in
a discrete manner a ball around t over which we will consider the increments of Y .
Accounting for the fact that t could lay very close to the boundary of I

(n)
kn

, we set

Definition 2.5. The coarse Hölder exponents of Y are

h
(n)
kn

:= −
1

n
log2 sup

{

|Y (u)− Y (t)| : u ∈ [(kn − 1)2−n, (kn + 2)2−n[
}

. (2.5)

To compare the limiting behavior of these exponents with h(t) we choose n such that
2−n+1 ≤ ε < 2−n+2. We have

[(kn − 1)2−n, (kn + 2)2−n[⊂ [t+ ε, t− ε[⊂ [(kn−2 − 1)2−n+2, (kn−2 + 2)2−n+2[.

from which it follows immediately that

Lemma 2.6.
h(t) = lim inf

n→∞
h
(n)
kn

It is essential to note that the countable set of numbers h
(n)
kn

contains all the scaling
information of interest to us. Being defined pathwise, they are random variables.

2.2 Scaling of Wavelet Coefficients

The discrete wavelet transform represents a 1-d process Y (t) in terms of shifted and
dilated versions of a prototype bandpass wavelet function ψ(t), and shifted versions of
a low-pass scaling function φ(t) [23, 106]. Made precise in the vocabulary of Hilbert
spaces: For special choices of the wavelet and scaling functions, the atoms

ψj,k(t) := 2j/2 ψ
(

2jt− k
)

, φj,k(t) := 2j/2 φ
(

2jt− k
)

, j, k ∈ Z (2.6)

form an orthonormal basis and we have the representations [23, 106]

Y (t) =
∑

k

DJ0,k φJ0,k(t) +
∞
∑

j=J0

∑

k

Cj,k ψj,k(t), (2.7)

with

Cj,k :=

∫

Y (t)ψj,k(t) dt, Dj,k :=

∫

Y (t)φj,k(t) dt. (2.8)

For a wavelet ψ(t) centered at time zero and frequency f0, the wavelet coefficient
Cj,k measures the signal content around time 2−jk and frequency 2jf0. The scaling
coefficient Dj,k measures the local mean around time 2−jk. In the wavelet transform,
j indexes the scale of analysis: J0 can be chosen freely and indicates the coarsest scale
or lowest resolution available in the representation.

Compactly supported wavelets are of especial interest in this paper (see [23]. The
Haar scaling and wavelet functions (see Figure 4(a)) provide the simplest example of
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such an orthonormal wavelet basis: φ is the indicator function of the unit interval, while
ψ(t) = φ(2t) − φ(2t − 1). For a process supported on the unit interval one may, thus,
choose J0 = 0. The supports of the fine-scale scaling functions nest inside the supports
of those at coarser scales; this can be neatly represented by the binary tree structure of
Figure 4(b). Row (scale) j of this scaling coefficient tree contains an approximation to
Y (t) of resolution 2−j. Row j of the complementary wavelet coefficient tree (not shown)
contains the details in scale j + 1 of the scaling coefficient tree that are suppressed in
scale j. In fact, for the Haar wavelet we have

Dj,k = 2−1/2(Dj+1,2k +Dj+1,2k+1),
Cj,k = 2−1/2(Dj+1,2k −Dj+1,2k+1).

(2.9)
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j/2
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FIGURE 4. (a) The Haar scaling and wavelet functions φj,k(t) and ψj,k(t). (b) Binary tree
of scaling coefficients from coarse to fine scales.

Wavelet decompositions contain considerable information on the singularities of a
process Y . Indeed, adapting the argument of [51, p. 291] (note the L2 wavelet normal-
ization used here — as opposed to L1 in [51] ) we find

Lemma 2.7. Fix t and let kn = kn(t) as in (2.4). If |Y (s) − Y (t)| = O(|s − t|h) for
s→ t, and if ψ is a compactly supported function with

∫

ψ = 0 and
∫

|ψ| <∞, then

2n/2 |Cn,kn | = 2n
∣

∣

∣

∣

∫

Y (s)ψ(2ns− k) ds

∣

∣

∣

∣

= O
(

2−nh
)

for n→∞. (2.10)

Proof
The compact support of ψ is assumed only for simplicity of the argument (compare

[51]), and we take it to be [0, 1]. Then, ψ(2ns− k) = 0 for s /∈ I (n)k . Also, |s− t| ≤ 2−n

for all s ∈ I (n)kn
. These facts, together with

∫

Y (t)ψ(s)ds = 0 and the given estimate on
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Y allow to conclude as

2−n/2 |Cn,kn | =

∣

∣

∣

∣

∣

∫

I
(n)
k

(Y (s)− Y (t))ψ(2ns− k) ds

∣

∣

∣

∣

∣

≤ C ·

∫

I
(n)
k

|s− t|h |ψ(2ns− k) | ds

= C · 2−nh
∫

I
(n)
k

|ψ(2ns− k) | ds = C · 2−nh2−n ·

∫

IR

|ψ(s) | ds

♦

Following the proof of [51, p. 291] more closely it is easily seen that the assumption
of ψ being compactly supported is not really needed. Indeed, a fast decay is sufficient
and the result holds also for functions which don’t necessarily form a basis such as
derivatives of the Gaussian exp(−x2). To distinguish such functions from the orthogonal
wavelets we will address them as ‘analyzing wavelets’.

In order to invert lemma 2.7 and infer the Hölder regularity of Y from the decay of
wavelet coefficients one needs the representation (2.7), sufficient wavelet regularity as
well as some knowledge on the decay of the maximum of the wavelet coefficients in the
vicinity of t, as developed in the pioneering work of [78] (see also [51] and [23, Thm.
9.2]).

All this suggests that the left hand side of (2.10) could produce an alternative useful
description of the local behavior oscillatory behavior of Y .

Definition 2.8. The coarse wavelet singularity exponents of Y are

w
(n)
kn

:= −
1

n
log2

∣

∣2n/2Cn,kn
∣

∣ . (2.11)

The local singularity exponent of wavelet coefficients is then w(t) := lim inf
n→∞

w
(n)
kn

.

Indeed, while the coarse Hölder exponents h
(n)
k give the exact Hölder regularity but

only under the assumption of constant approximating polynomials, using wavelets has
the advantage of yielding an analysis which is largely unaffected by polynomial trends
in Y . This is due to vanishing moments

∫

tmψ(t)dt = 0 which are typically built into
wavelets [23]. However, for a reliable estimation of true Hölder continuity through
wavelets one has to employ the lines of maxima, a method pioneered convincingly in
[78] (see also [51, 23, 53, 7]).

In any case, the decay of wavelet coefficients is interesting in itself as it relates to
LRD (compare [4] and Section 7.4) and regularity spaces such as Besov spaces [89, 30].

2.3 Other Singularity Exponents

The ‘classical’ multifractal analysis of a singular measure µ on [0, 1], translated into
the notations used here, has always been concerned with the study of the singularity
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structure of its primitive

M(t) =

∫ t

0

µ(ds) = µ([0, t]), (2.12)

which is an almost surely increasing process. Consequently, the supremum in h
(n)
kn

sim-
plifies to |M ((kn + 2)2−n)−M((kn− 1)2−n)| and one is lead to introduce yet another
singularity exponent:

Definition 2.9. The coarse increment exponents of M are

α
(n)
kn

:= −
1

n
log2 |M

(

(kn + 1)2−n
)

−M(kn2
−n)| = −

1

n
log2 µ

(

I
(n)
kn

)

. (2.13)

The local singularity exponent of increments is then α(t) := lim inf
n→∞

α
(n)
kn

.

As we will elaborate in lemma 5.5 the increment and Hölder exponents α
(n)
k and h

(n)
k

provide largely the same analysis for increasing M, however, there is a crucial lesson
to be learned for measures µ with fractal support in Section 5.6.

For further examples of singularity exponents we would like to refer to [63] which
treats the case of exponents which are so-called Choquet capacities, a notion which is
not needed to develop the multifractal formalism as we will show in this paper.

Also, [87] considers an arbitrary function ξ(I) from the space of all intervals to

IR+ (instead of only the I
(n)
k ) and develops a multifractal formalism similar to the one

presented here. There, it is suggested to consider the oscillations of Y around the mean,
i.e.,

ξ(I) :=

∫

I

∣

∣

∣

∣

Y (t)−

∫

I
Y (s)ds

|I|

∣

∣

∣

∣

dt (2.14)

This gives raise to the singularity exponent −(1/n) log2(ξ(I
(n)
k )) which is of particular

interest since it can be used to define oscillation spaces such as Sobolev spaces and
Besov spaces. Alternatively, interpolating Y in the interval I by the linear function
aI + bIt, one could use

ξ(I) :=

(∫

I

(Y (t)− (aI + bIt))
2 dt

)1/2

. (2.15)

This ξ(I) measures the variability of Y and is related to the dimension of the paths of
Y . In the definitions (2.14) and (2.15) constant, resp. linear terms are subtracted from
Y . This may remind one of the use of wavelets with one, resp. two vanishing moments.

In conclusion, there are various useful notions of singularity exponents which may
provide a characterization of a process Y of relevance in particular applications. Being
aware that these descriptions may very well differ for the same Y according to one’s
choice of an exponent, we do not attempt to value one over the other, but rather present
some aspects of multifractal analysis which are valid for any such choice, i.e., a form
of the celebrated multifractal formalism.
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3 Multifractal Analysis

Multifractal analysis has been discovered in the context of fully developed turbulence
[64, 36, 42, 46, 45] and subsequently further developed in physical and mathematical
circles (see [15, 56, 13, 12, 16, 102, 9, 66, 49, 78, 94, 22, 58, 33, 6, 53, 82, 25, 86, 8, 54, 31,
74] to give only a short list of some relevant work done in this area). At the beginning
stands the discovery that on fractals local scaling behavior as measured by exponents
h
(n)
k , α

(n)
k or w

(n)
k , is not uniform in general. In other words, h(t), α(t) and w(t) are

typically not constant in t but assume a whole range of values, thus imprinting a rich
structure on the object of interest [69, 80, 2, 88]. This structure can be characterized
either in geometrical terms making use of the concept of dimension, or in statistical
terms based on sample moments. A tight connection between these two descriptions
emerges from the multifractal formalism.

As we will see, as far as the validity of the multifractal formalism is concerned there
is no restriction in choosing a singularity exponent which seem fit for describing scaling
behavior of interest, as long as one is consistent in using the same exponents for both,
the geometrical and the statistical description. To express this fact we consider in this
section the arbitrary coarse singularity exponent

s
(n)
k (k = 0, . . . , 2n − 1, n ∈ IIN), (3.1)

which may be any sequence of random variables. To keep a connection with what was
said before think of s

(n)
k as representing a coarse singularity exponent related to the

oscillations of Y over the dyadic interval I
(n)
k . To accommodate processes which are

constant over some intervals we explicitly allow s
(n)
k to take the value ∞.

3.1 Dimension based Spectra

The strongest interests of the mathematical community are in the various measure
theoretical dimensions of sets E [a] which are defined pathwise in terms of limiting
behavior of s

(n)
kn

as n→∞, as follows

E [a] := {t : lim inf
n→∞

s
(n)
kn

= a},

K [a] := {t : lim
n→∞

s
(n)
kn

= a} (3.2)

These sets are typically ‘fractal’ meaning loosely that they have a complicated geo-
metric structure and more precisely that their dimensions are non-integer. A compact
description of the singularity structure of Y is, therefore, in terms of the dimensions of
E [a] and K [a].

Definition 3.1. The Hausdorff spectrum is the function

a 7→ dim(E [a]), (3.3)

where dim(E) denotes the Hausdorff dimension of the set E [103].



22 R. H. Riedi, Multifractal Processes

The sets E [a] (a ∈ IR) form a multifractal decomposition of the support of Y , i.e.,
they are disjoint and their union is the support of Y . We will loosely address Y as
a multifractal if this decomposition is rich, i.e. if the sets E [a] (a ∈ IR) are highly
interwoven or even dense in the support of Y .

We should point out that the study of singular measures (deterministic and random)
has often focussed on the simpler sets K [a] and their spectrum dim(K [a]) [56, 15, 33,
6, 82, 94, 91, 93, 8]. However, lemma 3.3 which is established below allows to extend
most of these results in order to provide formulas for dim(E [a]) also.

3.2 Grain based Spectra

An alternative to the above geometrical description of the singularity structure relies
on counting:‡

N (n)(a, ε) := #{k = 0, . . . , 2n − 1 : a− ε ≤ s
(n)
k < a+ ε}. (3.4)

Note, that infinite s
(n)
k have no influence here. Indeed, computing multifractal spectra

at a =∞ requires usually special attention (see [94]).

Definition 3.2. The grain based spectrum is the function

f(a) := lim
ε↓0

lim sup
n→∞

1

n
log2N

(n)(a, ε). (3.5)

To establish some of the almost sure pathwise properties it is convenient to introduce
also

f(a) := lim
ε↓0

lim inf
n→∞

1

n
log2N

(n)(a, ε) (3.6)

This approach has grown out of the difficulties involved with computation of Haus-
dorff dimensions, in particular in any real world applications. Using a mesh of given
grain size as in (3.4) instead of arbitrary coverings as in dim(E [a]) leads generally to
more simple notions. However, f should not be regarded as an auxiliary vehicle but
rather meriting attention in its own right. This point was already made in Section 1.2,
and we hope to make it stronger as we proceed in our presentation.

Our first remark on f(a) concerns the fact that the counting used in its definition,
i.e., N (n)(a, ε) may be used to estimate box dimensions. Based on this fact it was shown
in [94] that

dim(K [a]) ≤ f(a). (3.7)

Note that the set in (3.7) is a subset of E [a] since in its points the sequence of s
(n)
k is

actually required to converge. Also, we will later need a lower bound on f(a). Therefore,
we provide two formulas that are sharper than (3.7).

‡More generally, using c-ary intervals in Euclidean space IRd kn will range from 0 to cnd−1.
Logarithms will have to be taken to the base c since we seek the asymptotics of N (n)(a, ε) in
terms of a powerlaw of resolution at stage n, i.e., N (n)(a, ε) ' cnf(a). The maximum value of
f(a) will be d.
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Lemma 3.3.
dim(E [a]) ≤ f(a) (3.8)

and
dim(K [a]) ≤ f(a). (3.9)

Proof
Fix a. To prove the first part of the lemma consider an arbitrary γ > f(a), and choose
η > 0 such that γ > f(a) + 2η. Then, there is ε > 0 and m0 ∈ IIN such that

N (n)(a, ε) ≤ 2n(f(a)+η)

for all n > m0. Let us define J(m) := ∪{kn : n ≥ m and a− ε ≤ s
(n)
kn
≤ a+ ε}. Then,

for any m the intervals I
(n)
kn

with kn ∈ J(m) form a cover of E [a]. These intervals are of
length less than 2−m. Moreover, for any m > m0 we have

∑

kn∈J(m)

|I(n)kn
|γ =

∑

n≥m

N (n)(a, ε) · 2−nγ ≤
∑

n≥m

2−n(γ−f(a)−η) ≤
∑

n≥m

2−nη

tends to zero with m→∞. We conclude that the γ-dimensional Hausdorff measure of
E [a] is zero, hence, dim(E [a]) ≤ γ. Letting γ → f(a) completes the first part.

Aiming at using f(a) for an estimate of Hausdorff dimensions consider an arbitrary

γ > f(a), and choose η > 0 such that γ > f(a) + 2η. Note that N (n)(a, ε) ≤ 2n(f(a)+η)

similar as before, but this time only for some infinitely many indices n (not all large n).
This is very little information and not sufficient to tackle E [a]; even to deal with K [a]

we need the auxiliary sets Kl := {t : a− ε < s
(n)
k < a+ ε for k = kn(t) and all n > l}

(this approach is similar to [94, p. 137]). An efficient cover of Kl is provided by the sets

I
(n)
k where n > l is fixed and where k satisfies a− ε < s

(n)
k < a+ ε. We find

∑

k: a−ε<s
(n)
k
<a+ε

|I(n)k |γ = N (n)(a, ε) · 2−nγ ≤ 2−n(γ−f(a)−η),

where the last inequality holds at least for some infinitely many indices n. This allows
to conclude that the γ-dimensional Hausdorff measure of Kl is zero and dim(Kl) ≤ γ.
Since K [a] = ∪lKl we conclude dim(K [a]) ≤ γ by countable continuity of the Hausdorff
measure dim(·) [32, p. 29]. Letting γ → f(a) completes the proof. ♦

3.3 Partition Function and Legendre Spectrum

The second note on the grain spectrum f(a) concerns its interpretation as a Large
Deviation Principle (LDP). To this end we consider N (n)(a, ε)/2n to be the probability

to find (for a fixed realization of Y ) a number kn ∈ {0, . . . , 2
n−1} such that s

(n)
kn
∈ [a−

ε, a+ ε]. Typically, there will be one “expected” or most frequent value of limn→∞ s
(n)
kn

,
denoted â, and f(a) will reach its maximum 1 at a = â. If a differs from â, on the other
hand, then [a− ε, a+ ε] will not contain â for small ε and the chance to observe coarse
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exponents s
(n)
kn

which lie in [a− ε, a+ ε] will decrease exponentially fast with rate given
by f(a).

Appealing to the theory of LDP-s we consider the random variable An = −ns(n)K ln(2)
where K is randomly picked from {0, . . . , 2n − 1} with uniform distribution Un (recall
that the we study one fixed realization or path of Y ) and introduce its ‘logarithmic
moment generating function’:

Definition 3.4. The partition function of a path of Y is defined for all q ∈ IR as

τ(q) := lim inf
n→∞

−
1

n
log2 S

(n)(q), (3.10)

where

S(n)(q) :=
2n−1
∑

k=0

exp
(

−qns(n)k ln(2)
)

=
2n−1
∑

k=0

2−nqs
(n)
k = 2nIEn

[

2−nqs
(n)
k

]

. (3.11)

Here, IEn stands for expectation with respect to Un. To avoid trivialities we set 2−q∞ := 0
for all q ∈ IR, i.e., infinite s

(n)
k give no contribution to the partition sum.

Theorems on LDP such as the one of Gärtner-Ellis [27] apply then to yield the
following result which was established in a slightly stronger version in [91]:

Theorem 3.5. If the limit

τ(q) = lim
n→∞

−
1

n
log2 S

(n)(q) (3.12)

exists and is finite for all q ∈ IR, and if τ(q) is a differentiable function of q, then the
double limit

f(a) = lim
ε↓0

lim
n→∞

1

n
log2N

(n)(a, ε) (3.13)

exists, in particular f(a) = f(a), and

f(a) = τ ∗(a) := inf
q∈IR

(qa− τ(q)) (3.14)

for all a.

For the existence of the limit (3.12) see remark 3.11.
Proof
The theorem of Gärtner-Ellis [27, Thm II] allows to estimate the exponential decay rate

of the probabilities Pn[s
(n)
K ∈ E] of our random variables s

(n)
k being contained in a set E.

Recall that the randomness is here in choosing the integer K from {0, . . . , 2n− 1} with
uniform distribution Un. In the light of (3.11), the assumptions made in the theorem
ensure that [27, Thm II] is applicable.

As is typical for results on large deviations, upper bounds are available for closed
sets E while lower bounds can be obtained for open sets E. Recall that the range of
allowed values for s

(n)
k in N (n)(a, ε) is half open; thus

#{k : |s(n)k − a| < ε} ≤ N (n)(a, ε) ≤ #{k : |s(n)k − a| ≤ ε}
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Applying the LDP bounds of [27, Thm II] to the above sets gives immediately

lim sup
n→∞

1

n
log2N

(n)(a, ε) ≤ sup
|a′−a|≤ε

τ ∗(a′)

and

lim inf
n→∞

1

n
log2N

(n)(a, ε) ≥ sup
|a′−a|<ε

τ ∗(a′).

By continuity of τ ∗(a) these two bounds on the right hand side coincide and (3.13) is
established. Letting now ε→ 0 shows that f(a) = τ ∗(a). ♦

The assumptions of this theorem are too restrictive in many applications. Before
dwelling more on the relation between τ and f in section 4 let us note the following
simple fact. Its proof explains why the Legendre transform appears in this context.

Lemma 3.6. For any a ∈ IR
f(a) ≤ τ ∗(a). (3.15)

Proof
Fix q ∈ IR and take a with f(a) > −∞. Let γ < f(a) and ε > 0. Then, there are
arbitrarily large n such that N (n)(a, ε) ≥ 2nγ . For such n we estimate S(n)(q) by noting

2n−1
∑

k=0

2−nqs
(n)
k ≥

∑

|s
(n)
k
−a|<ε

2−nqs
(n)
k ≥ N (n)(a, ε)2−n(qa+|q|ε) ≥ 2−n(qa−γ+|q|ε) (3.16)

and hence τ(q) ≤ qa− γ+ |q|ε. Letting ε→ 0 and γ → f(a), we find τ(q) ≤ qa− f(a).
Since this is trivial if f(a) = −∞ we have established that

τ(q) ≤ qa− f(a) and f(a) ≤ qa− τ(q) for all a and q in IR. (3.17)

From this it follows trivially that τ(q) ≤ f ∗(q) and f(a) ≤ τ ∗(a). ♦

Historical note In the special case when Y is the distribution function M of a
measure µ, choosing the singularity exponent s

(n)
k = α

(n)
k results in

S(n)α (q) =
2n−1
∑

k=0

∣

∣M
(

(k + 1)2−n
)

−M(k2−n)
∣

∣

q
=

2n−1
∑

k=0

(

µ(I
(n)
k )
)q

. (3.18)

This is the original form in which τ(q) as been introduced in multifractal analysis
[45, 46, 36, 64]. Note that there is a close connection to the thermo-dynamical formalism
[101].

3.4 Deterministic Envelopes

Often, we would like to use a simple analytical approach in order to gain intuition
on the various spectra on a typical path of Y , or at least some estimate of them. To
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this end, we consider now position on the time axis, i.e., t or kn, and the path of Y
to be random simultaneously as we apply the LDP. More precisely, we consider the
exponents s

(n)
k (ω) now as being random variables over (Ω× 2n) where k is picked with

uniform distribution from {0, , . . . , 2n − 1}, and independently of ω.

Definition 3.7. The deterministic partition function of Y is

T (q) := lim inf
n→∞

−
1

n
log2 IEΩ[S

(n)(q)]. (3.19)

Remark 3.8. (Ergodic Processes) In the definitions of τ(q) and T (q) we have
assumed that Y is defined on a compact interval which we took to be [0, 1] without
loss of generality. For processes defined on IR we modify S(n)(q) to

S(n)(q) := lim
N→∞

1

N

N2n−1
∑

k=0

2−nqs
(n)
k

and N (n)(a, ε) similarly. For ergodic processes this becomes S(n)(q) = 2nIEΩ[2
−nqs

(n)
k ]

almost surely. Thus, IEΩ[S
(n)(q)] = S(n)(q) a.s. and

T (q)
a.s.
= τ(q, ω). (3.20)

We refer to (7.11) and (5.32) for an account on the extent to which marginal distribu-
tions may be reflected in multifractal spectra in general. ♣

For processes on [0, 1] we can not expect to have (3.20) in all generality. Nevertheless,
(3.20) holds in various nice situations as we are going to see, and T (q) does always serve
as a deterministic envelope of τ(q, ω):

Lemma 3.9. For clarity, we make the randomness of τ explicit by writing τ(q, ω).
With probability one

τ(q, ω) ≥ T (q) for all q with T (q) <∞. (3.21)

The inequality may be strict (see Example 5.3).
Proof
Consider any q with finite T (q) and let ε > 0. Let n0 be such that IEΩ[S

(n)(q)] ≤
2−n(T (q)−ε) for all n ≥ n0. Then,

IE

[

lim sup
n→∞

2n(T (q)−2ε)S(n)(q, ω)

]

≤ IE
∑

n≥n0

2n(T (q)−2ε)S(n)(q, ω) ≤
∑

n≥n0

2−nε <∞.

Thus, almost surely lim supn→∞ 2n(T (q)−2ε)S(n)(q, ω) < ∞, and τ(q) ≥ T (q) − 2ε. It
follows that this estimate holds with probability one simultaneously for all ε = 1/m
(m ∈ IIN) and some countable, dense set of q values with T (q) < ∞. Since τ(q) and
T (q) are always concave due to corollary 4.3 below, they are continuous on open sets
and the claim follows. ♦
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Remark 3.10. (Importance of moments of negative order q < 0) In ‘tradi-
tional’ statistics moments are usually considered to be taken with respect to a centered
random variable, i.e., IE[|X−IEX|q]. In this setting, moments of negative order measure
only the fluctuations around the mean and can, therefore, often be neglected.

As we pointed out in remark 3.8 S(n)(q) can be considered as approximating marginal

moments of the random variables 2−ns
(n)
k , at least under some ergodicity assumption.

Depending on one’s choice these may be moduli of increments as in (3.18) or moduli of
wavelet coefficients. Increments as well as wavelet coefficients are clearly centered for
a process with zero mean increments and possess considerable mass around zero, espe-
cially for Gaussian processes such as fBm; in this case, negative order moments provide
indeed only little information. We will comment in greater detail on the multifractal
scaling of fBm and the rôle of negative q in Section 7.3 when the necessary results are
available.

For processes with positive increments such as cascades, on the other hand, negative
order moments become important and relevant, since they capture the probability of
very small increments. In other words, the negative order moments are related to the
time instances t with high regularity, i.e. the smooth parts in these otherwise ‘spiky’
processes.

A difficulty arises for cascades with fractal support. Due to boundary effects the
coarse singularity exponents may become exceptionally large (yet finite), causing the
partition function to degenerate for negative q [91]. In Section 5.6 we will show how

to improve on the analysis using increment exponents α
(n)
k or Hölder exponents h

(n)
k .

Similar problems are encountered also with wavelet exponents, where a remedy has
been devised in [78] using local maxima in wavelet bands. ♣

Remark 3.11. (Quenched and annealed averages)
A simple application of Chebichev’s inequality shows that IE[τ(q)] ≥ T (q) which is

clearly not as strong as lemma 3.9. However, IE[τ(q)] is of interest in itself. Assuming
that the limit (3.12) actually exists, Dini’s theorem allows to exchange expectation and
limit and we may write

IE[τ(q)] = lim
n→∞

(−1/n)IE[log(S(n)(q))].

In material science, this expression is also known as a quenched average. Exchanging
expectation and logarithm –an operation which in general changes the object– we
obtain T (q), also termed annealed average.

The free energy is said to have the self-averaging property if quenched and annealed
averages are equal. Since τ(q) ≥ T (q) almost surely the free energy occurring naturally
in the framework of multifractal analysis is self-averaging if and only if τ(q) = T (q)
almost surely (provided the limits exist).

The existence of the limit (3.12) for binomial cascades has been established in [18]
as well as in [38]. It follows also from the following simple observation, which promises
wider applicability:

lim sup
n→∞

−
1

n
log2 S

(n)(q) ≤ f ∗(q).
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This fact can be established similarly as lemma 3.6. Thus, the equality f(a) = T ∗(a)
entails the existence of the limit (3.12). ♣

The step from the partition function τ(q) to the deterministic envelope T (q) consists
in replacing averages of exponents within a path by averages within and across paths.
For f(a) this translates to replacing probability over one path by the probability within
and across paths. As we shall see this means to average N (n)(a, ε) over all paths. For
simplicity of the argument fix n, a and ε, and let 1 be the random variable which is
1 if a − ε ≤ s

(n)
k (ω) < a + ε and 0 otherwise, where (ω, k) are randomly chosen from

Ω × 2n. Obviously, IE[1] = P [1 = 1]. To compute this value we make use of Fubini’s
theorem and average 1 first within a fixed path –which yields N (n)(a, ε)/2n– and then
average over all paths. Alternatively, we may fix the location k and average 1 over all
paths first –which yields PΩ[a − ε ≤ s

(n)
k (ω) < a + ε]– and then average over all k. In

summary:

PΩ×2n [a− ε ≤ s
(n)
k < a+ ε] = IEΩ[N

(n)(a, ε)/2n] = 2−n
2n−1
∑

k=0

PΩ[a− ε ≤ s
(n)
k < a+ ε].

(3.22)
In analogy with (3.5) we multiply this probability with 2n when defining the corre-
sponding spectrum:

Definition 3.12. The deterministic grain spectrum of Y is

F (a) := lim
ε↓0

lim sup
n→∞

1

n
log2 IEΩ[N

(n)(a, ε)] (3.23)

To have some control over the convergence in n, which is needed to obtain a formula
for f(a) valid for almost all paths in Section 8, we introduce

F (a) := lim
ε↓0

lim inf
n→∞

1

n
log2 IEΩ[N

(n)(a, ε)]. (3.24)

Replacing N (n)(a, ε) by (3.22) in the proof of theorem 3.5 and taking expectations
in (3.16) we find properties analogous to the pathwise spectra τ and f :

Theorem 3.13. For all a ∈ IR

F (a) ≤ T ∗(a). (3.25)

Furthermore, if T (q) admits a finite limit as n → ∞ for all q ∈ IR similar to (3.12),
and is concave and differentiable as a function of q, then F (a) admits a limit as n→∞
analogous to (3.13), in particular

F (a) = F (a) = T ∗(a). (3.26)

We give such an example in Example 5.3.
It follows from lemma 3.9 that with probability one τ ∗(a, ω) ≤ T ∗(a) for all a.

Similarly, the deterministic grain spectrum F (a) is an upper bound to its pathwise
defined random counterpart f(a, ω), however, only pointwise. On the other hand, we
have here almost sure equality under certain conditions.
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Theorem 3.14. Fix some number a ∈ IR. Then, almost surely

f(a, ω) ≤ F (a). (3.27)

If for all n the random variables s
(n)
k (k = 0, . . . , 2n−1) are i.i.d., and if F (a) = F (a) >

0, then almost surely
f(a, ω) = f(a, ω) = F (a). (3.28)

Compare the regularity condition F (a) = F (a) (see (3.26)) to the more restrictive
requirement that F (a) assumes a limit similar to (3.13).

Remark 3.15. (Independent increments) It is easy to extend this result and

allow s
(n)
k to depend on some of its nearest neighbors, say on s

(n)
l for |l − k| < m0 for

some constant m0. Thus, if Y has independent increments, (3.28) applies not only to

the increment exponents α
(n)
k but also to the Hölder exponents h

(n)
k as well as to the

wavelet exponents w
(n)
k for compactly supported wavelets. ♣

Proof
The inequality (3.27) follows as in lemma 3.9, using the estimate

IEΩ lim sup
n→∞

2−n(F (a)+2ε)N (n)(a, ε) ≤ IEΩ
∑

n≥m0

2−n(F (a)+2ε)N (n)(a, ε) ≤
∑

n≥m0

2−nε.

Since the grain spectra are not necessarily continuous, the inequality cannot be estab-
lished for all a simultaneously, but only for a countable set of a-values.

Assume now that the s
(n)
k (k = 0, . . . , 2n − 1) are independent and identically dis-

tributed. To show equality in (3.27), let us note first that N (n)(a, ε) is a Bernoulli
variable:

PΩ
[

N (n)(a, ε) = j
]

=

(

2n

j

)

pn
j(1− pn)

2n−j (3.29)

where pn = PΩ[a− ε ≤ s
(n)
k < a+ ε] = 2−nIEΩ[N

(n)(a, ε)].

The property (3.26) says that the PΩ[a−ε ≤ s
(n)
k < a+ε] are ‘close to’ converging as

(n→∞). More precisely, (3.26) guarantees that for any ρ > 0 we find ε0(ρ) such that
lim supn and lim infn of these quantities do not differ by more than ρ for all ε < ε0.
Thus, for any such ε and any η > 0 there is n1(η, ε, ρ) such that for all n > n1

F (a) + η + ρ ≥
1

n
log2(2

npn) ≥ F (a)− η − ρ. (3.30)

Let now ρ > 0 and η > 0 be such that 1 > F (a) + η > F (a) − η > 0. Using (3.30)
it follows easily that PΩ

[

N (n)(a, ε) = j
]

/PΩ
[

N (n)(a, ε) = j − 1
]

> 1, i.e., (3.29) grows

monotonously as a function of j, for j < 2nF (a).
Now, let 0 < γ < F (a) − η − ρ and choose l such that l − 1 < 2nγ ≤ l. Then,

exploiting the monotony of (3.29), one finds

PΩ
[

N (n)(a, ε) ≤ 2nγ
]

≤ l ·

(

2n

l

)

pn
l(1− pn)

2n−l. (3.31)
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Using a standard estimate on binomial coefficients based on Stirling’s formula and
observing that F (a) − η − ρ > 0 a tedious but straightforward calculation allows to
conclude that the RHS of (3.31) decays with hyper-exponential speed in n, mainly
because of the last term. In summary,

∞
∑

n=1

PΩ
[

N (n)(a, ε) ≤ 2nγ
]

<∞.

By the Borel-Cantelli lemma

PΩ
[

N (n)(a, ε) ≤ 2nγ for infinitely many n
]

= 0. (3.32)

In other words, almost surely N (n)(a, ε) > 2nγ for all large n, or again in other words,
almost surely lim infn→∞(1/n) log2N

(n)(a, ε) ≥ γ. Letting ε→ 0 gives f(a, ω) ≥ γ a.s.
Letting then γ → F (a)− η − ρ, η → 0 and ρ→ 0 (all in discrete sequences, of course)
yields that almost surely

F (a) ≤ f(a, ω).

But f(a, ω) ≤ f(a, ω) by definition and f(a, ω) ≤ F (a) a.s. by (3.27). So, (3.28) follows.
♦

Here is a first result that allows to compute almost sure pathwise spectra from
knowing only T under various regularity assumptions.

Corollary 3.16. Assume that T (q) admits a finite limit as n→∞ for all q ∈ IR, and
is concave and differentiable as a function of q. Assume furthermore that for large n
the singularity exponents s

(n)
k (k = 0, . . . , 2n− 1) used in T are i.i.d. random variables.

Pick a such that T ∗(a) > 0. Then almost surely

f(a, ω) = f(a, ω) = τ ∗(a, ω) = F (a) = T ∗(a). (3.33)

Remark 3.17. (Negative Dimensions)
Note that T ∗ and F may assume negative values, which is not possible for f . Con-

sequently, T ∗ and F may be expected to be a good estimator of f only where they are
positive.

Negative F (a) and T ∗(a) have been termed negative dimensions [67]. They corre-
spond to probabilities of observing a coarse Hölder exponent a which decay faster than
the 2n ‘samples’ of s

(n)
k available in one realization. Oversampling the process, i.e., an-

alyzing several independent realizations will increase the number of samples and more
‘rare’ s

(n)
k may be observed. In loose terms, in exp(−n ln(2)F (a)) independent traces

one has a fair chance to see at least one s
(n)
k of size ' a.

Thereby, it is essential not to average the spectra f(a) of the various realizations but
the numbers N (n)(a, ε). This way, negative ‘dimensions’ f(a) become visible. ♣

4 The Multifractal Formalism

Various multifractal spectra have been introduced in the previous section, along with
some simple relations between them which we may summarize as:
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Corollary 4.1 (Multifractal formalism).
Provided all spectra are in terms of the same singularity exponent, we have

dim(K [a]) ≤ f(a) ≤ f(a) ≤ τ ∗(a)
a.s.

≤ T ∗(a). (4.1)

The first relations hold pathwise, and the last one with probability one for every a ∈ IR.
Similarly,

dim(E [a]) ≤ f(a)
a.s.

≤ F (a) ≤ T ∗(a).

The spectra on the left end have stronger implications on the local scaling structure
while the ones on the right end are more easy to estimate or calculate.

This set of inequalities could fairly be called the ‘multifractal formalism’. However,
in the mathematical community a slightly different terminology is already established
which goes as ‘the multifractal formalism holds’ and means that for almost all paths
of a particular process the spectrum dim(K [a]) coincides with the Legendre transform
of some adequate partition function (such as τ(q)). It appears that this property holds
indeed in a generic sense, meaning that in the proper context (see [52]) the ‘multifractal
formalism’ is valid quasi-surely in Baire’s sense. In view of (4.1) this implies that equality
holds then between all introduced spectra.

Though we pointed out some conditions for equality between f , τ ∗ and T ∗ we must
note that in general we may have strict inequality in some or all parts of (4.1). Such
cases have been presented in [91] and [94]. There is, however, one equality which holds
always and connects the two spectra in the center of (4.1).

Theorem 4.2. Consider a realization or path of Y . Recall that infinite s
(n)
k don’t con-

tribute to τ(q) nor to f(a).

a) Both-sided multifractal: If the finite s
(n)
k are bounded, then

τ(q) = f ∗(q) for all q ∈ IR. (4.2)

b) Left-sided multifractal: If the finite s
(n)
k are unbounded from above but bounded

from below, then

τ(q) =

{

f ∗(q) for all q > 0
−∞ for all q < 0.

c) Right-sided multifractal: If the finite s
(n)
k are bounded from above but unbounded

from below, then

τ(q) =

{

−∞ for all q > 0
f ∗(q) for all q < 0.

d) If the finite s
(n)
k are unbounded from above and from below, then

τ(q) = −∞ for all q 6= 0.
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Proof
The following notation will be useful: κn(a, ε) := {k : a − ε ≤ s

(n)
k < a + ε}. Recall

that τ(q) ≤ f ∗(q) from lemma 3.6.
Now, to estimate τ(q) from below, we will group the terms in S (n)(q) conveniently,

i.e.,

S(n)(q) ≤
(

ba/εc
∑

i=−ba/εc

∑

κn(iε,ε)

+
∑

|s
(n)
k
|>a

)

2−nqs
(n)
k , (4.3)

where we keep the choice of a open for the moment. Since we need uniform estimates
on N (n)(a, ε) for various a, some preparation is needed.

Fix q ∈ IR and let η > 0. Then, for every a ∈ [−a, a] there is ε0(a) and n0(a) such that
N (n)(a, ε) ≤ 2n(f(a)+η) for all ε < ε0(a) and all n > n0(a). We would like to have ε0 and
n0 independent from a for our uniform estimate. To this end note that N (n)(a′, ε′) ≤
N (n)(a, ε) for all a′ ∈ [a−ε/2, a+ε/2] and all ε′ < ε/2. By compactness we may choose
a finite set of aj (j = 1, . . . ,m) such that the collection [aj − ε0(aj)/2, aj + ε0(aj)/2]
covers [−a, a]. Set ε1 = (1/2)minj=1,...,m ε0(aj) and n1 = maxj=1,...,m n0(aj). Then, for
all ε < ε1 and n > n1 we have

N (n)(a, ε) ≤ 2n(f(a)+η)

for all a ∈ [−a, a]. For ε < ε1 and n > n1 we estimate the first term in (4.3) by

ba/εc
∑

i=−ba/εc

∑

κn(iε,ε)

2−nqs
(n)
k ≤

ba/εc
∑

i=−ba/εc

N (n)(iε, ε)2−n(qiε−|q|ε) ≤

ba/εc
∑

i=−ba/εc

2−n(qiε−f(iε)−η−|q|ε) ≤ (2ba/εc+ 1) · 2−n(f
∗(q)−η−|q|ε). (4.4)

Case a): For bounded s
(n)
k this is all we need. Indeed, choosing a larger than |s(n)k | for

all n and k, the second term in (4.3) vanishes and (4.4) estimates S(n)(q) itself. Letting
n → ∞ we find τ(q) ≥ f ∗(q) − η − |q|ε for all ε < ε1. Now we let ε → 0 and finally
η → 0 to find the desired inequality τ(q) ≥ f ∗(q).

Case b): If the s
(n)
k are bounded only from below we proceed differently for positive

and negative q. For q > 0 we choose a large enough to ensure qa > f ∗(q) + 1 as well as

s
(n)
k > −a for all k and n. The second term in (4.3) is then bounded by

∑

s
(n)
k
>a

2−nqs
(n)
k ≤ 2n2−nqa ≤ 2−nf

∗(q)

using that the sum has at the most 2n terms. This expression is certainly smaller than
the right hand side of (4.4), whence S(n)(q) is bounded by twice (4.4) and the result
follows as before in case a).
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For q < 0 we simply note that for any number x we can find arbitrarily large n such
that s

(n)
k > x for some k. This implies that S(n)(q) ≥ 2−nqx and τ(q) ≤ qx. Letting

x→∞ proves the claim τ(q) = −∞ since q is negative.

Case c): If the s
(n)
k are bounded only from above we argue similarly as in case b).

Finally, in case d) we find τ(q) = −∞ for all q 6= 0 as in case b) and c). ♦

Note that τ(q) may be discontinuous at 0 in the one-sided cases, but as a Legendre
transform§ it is always concave. Moreover:

Corollary 4.3 (Properties of the partition function). The partition function τ(q)
is always concave. Depending on which case of theorem 4.2 applies, τ(q) is moreover
continuous on IR, {q > 0}, or {q < 0}; furthermore, it is differentiable in those sets
with at the most countable many exceptions.

If for large enough n all s
(n)
k are positive for a given path of the process Y , then τ(q)

is non-decreasing. Such is the case for s
(n)
k = α

(n)
k and s

(n)
k = h

(n)
k provided the path is

increasing, or at least of bounded variation, and also for s
(n)
k = w

(n)
k provided that the

path lies in an appropriate regularity space such as L2, the space of square-integrable
functions. However, τ(q) may have decreasing parts if the analyzed process exists only
in the distributional sense, such as binomial measures (see section 5 and Figure 7).

From a numerical point of view τ(q) is more robust than f since τ(q) involves averages
and is not in terms of a double limit. Thus, one would like to invert theorem 4.2. In
order to efficiently do so we need:

Lemma 4.4 (Lower semi-continuity of f and F ). Let am converge to a∗. Then

f(a∗) ≥ lim sup
m→∞

f(am) (4.5)

and verbatim for F .

Proof
For all ε > 0 one can find m0 such that a∗ − ε < am − ε/2 < am + ε/2 < a∗ + ε for
all m > m0. Then, N

(n)(a∗, ε) ≥ N (n)(am, ε/2) and IE[N (n)(a∗, ε)] ≥ IE[N (n)(am, ε/2)].
Following now only the case for f , we write

lim sup
n→∞

1

n
log2N

(n)(a∗, ε) ≥ lim sup
n→∞

1

n
log2N

(n)(am, ε/2) ≥ f(am)

for any m > m0(ε). Letting first m→∞ and then ε→ 0 proves the claim. ♦

Corollary 4.5 (Central multifractal formalism). We always have

f(a) ≤ f ∗∗(a) = τ ∗(a). (4.6)

For some a we have even equality. More precisely, for all q ∈ IR for which τ ′(q±) is
meaningful

f(a) = τ ∗(a) = qτ ′(q±)− τ(q±) at a = τ ′(q±). (4.7)

§For a tutorial on the Legendre transform see [89, App. A].
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Note that (4.7) uses only local properties of τ(q) which should be compared to
theorem 3.5.

For a concave, real-valued function g(q) the derivative g ′ exists in all but countable
many exceptional points and it is a monotone function. Thus, one can define mean-
ingfully g′(q+) for all q as the limit of g′(qn) where qn approaches q from the right
and runs through any set of points where the derivative exists. The only difficulty with
τ(q) lies then in its possibly infinite values. According to theorem 4.2 and corollary 4.3
τ ′(q±) is meaningful either for all q ∈ IR, all q ≥ 0, all q ≤ 0, or none.

Remark 4.6. (Special values of τ and the shape of f) By convention, S (n)(0)

counts how many of the s
(n)
k are finite. So, S(n)(0) ≥ 0 and we have always τ(0) ≤ 0.

Moreover, S(n)(0) ≥ N (n)(a, ε) for all a, which implies

f(a) ≤ −τ(0) (4.8)

with equality at a = τ ′(0±), lest the finite s
(n)
k are unbounded from below and above.

If all s
(n)
k are finite, then τ(0) = −1. In general, −τ(0) gives the (box) dimension of the

support of the analyzed path of the process Y (compare Example 5.4 and [91]).

In some cases, such as s
(n)
k = h

(n)
k , the singularity exponents are monotonous in the

sense that 2−ns
(n)
k ≥ max(2−ns

n+1
2k , 2−ns

n+1
2k+1). If so, S(n)(1) ≥ 2S(n+1)(1) and τ(1) ≥ −1

(h
(n)
k are always bounded from below). In the ‘classical case’ of s

(n)
k = α

(n)
k for an

increasing path of Y we have obviously S(n)(1) = S(n+1)(1) and τ(1) = 0. Consequently,

Increasing path: fα(a) ≤ a (4.9)

with equality at both, a = τ ′(1+) and a = τ ′(1−) (see Figure 6). It cannot be stressed
enough that (4.9) may fail for processes which are not monotonous (compare Sec-
tion 7.3). For certain increasing processes, τ ′(1) has been identified as the dimension of
the carrier and received the name ‘information dimension’ [44, 42, 43, 83, 32, 91, 6, 37]
(compare (5.27)). One can think of the support as a function’s ‘realm’, i.e the closure of
all points where the function is non-constant, and of the carrier as the function’s ‘core’,
i.e., the smallest set of points one can choose over which the function still exhibits
its full variation. For a cumulative distribution function of a probability measure, the
support collects all but the open intervals with zero probability, while the core marks
the smallest set with probability one.

♣

Proof
The graph of f ∗∗ is the concave hull of the graph of f which implies (4.6). It is an
easy task to derive (4.7) under assumptions suitable to make the tools of calculus
available such as continuous second derivatives. The reader not familiar with Legendre
transforms should take the opportunity and perform a simple minimization of qa−τ(q)
as a function of q to convince himself of (4.7).

To prove (4.7) in general let us first assume that τ is differentiable at a fixed q∗. Since
τ(q∗) = f ∗(q∗) we can find a sequence am such that τ(q∗) = limm→∞ q∗am − f(am).
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Now consider the functions q 7→ qam − f(am). Due to (3.17) they must all lie above
τ(·). But evaluated at q∗ these functions approach τ(q∗). Being linear, their slopes must
converge to the slope of the tangent at τ(q) in q∗, in other words, am must converge to
a∗ := τ ′(q∗).

From this, f(am) converges to q∗a∗−τ(q∗). Applying lemma 4.4 we find that f(a∗) ≥
limm f(am) = q∗a∗ − τ(q∗). Recalling (3.17) again implies the desired equality f(a∗) =
q∗a∗ − τ(q∗).

Let us now consider any q ∈ IR for which τ ′(q+) is meaningful. Then, there is a
sequence of numbers qm larger than q in which τ is differentiable and which converges
down to q. Consequently, τ ′(q+) = limm τ

′(qm). The formula (4.7) being established
at all qm lemma 4.4 applies now with am = τ ′(qm) and with a∗ = τ ′(q+) to yield
f(τ ′(q+)) = f(a∗) ≥ lim supm f(am) = limm qmτ

′(qm+) − τ(qm+) = qτ ′(q+) − τ(q+).
Again, (3.17) furnishes the opposite inequality. A similar argument applies to τ ′(q−).

♦

Corollary 4.7. If T (q) is finite for some positive q then the finite s
(n)
k are bounded

from below for almost all paths; moreover, for all q > 0 with finite T (q)

T (q) = F ∗(q). (4.10)

If T (q) is finite for some negative q then the finite s
(n)
k are bounded from above for

almost all paths, and (4.10) holds for all q < 0 with finite T (q). Moreover, for all q for
which T ′(q) exists

F (a) = T ∗(a) = qT ′(q)− T (q) at a = T ′(q). (4.11)

See Example 5.3 for a case with F (a) < T ∗(a).
Proof
If T (q) is finite then τ(q) > −∞ by lemma 3.9. So, the first claims follow from theo-
rem 4.2 and by taking expectation in (4.3) and (4.4). Formula (4.11) could actually be
strengthened to read similar to (4.7), the proof following along the lines of corollary 4.5.

♦

5 Binomial Multifractals

The binomial cascade has a long standing tradition in serving as the paradigm of
multifractal scaling [64, 56, 66, 15, 49, 10, 91, 95]. We present it here with an eye on
possible generalizations of use in modelling increasing random processes.

5.1 Construction of conservative cascades

The binomial cascades form a class of increasing processes. The construction of a
binomial cascade relies on two main ingredients: the first one provides infinite geometric
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detail through iterative sub-division while the second one provides randomness. To
clearly distinguish these two parts we construct a binomial cascade pathwise, i.e., we
first describe the geometrical detail inherent to any path (or realization) of the cascade
and introduce randomness only afterwards.

Each path of a binomial cascade is a distribution function Mb(t), in particular each
path is right-continuous and increasing. As we will see, almost all paths possess no
derivative (or density function), meaning that Mb(t) 6=

∫ t

−∞
M′

b(s)ds; unless for a
handful of trivial cascades. Being distribution functions, though, each path Mb is
uniquely related to a measure or (probability) distribution µb throughMb(t) = µb(]−
∞, t[). Actually, the easiest way to construct Mb is by defining µb first. Except for
trivial cases, µb is a true distribution and not a function in the usual sense. We will
call µb a binomial measure and Mb(t) = µb(]−∞, t[) a binomial cascade.

In order to define µb we make the notation (2.4) more precise in the following.
For any fixed t there is a unique sequence k1, k2, . . . such that the dyadic intervals
I
(n)
kn

= [kn2
−n, (kn + 1)2−n[ contain t for all integer n, indeed, kn = kn(t) = bt2

nc. It is
clear that any t defines in this way a unique sequence kn (n ∈ IIN) with the following
property:

Definition 5.1. We call a sequence (k1, k2, . . .) such that I
(n+1)
kn+1

is a subinterval of I
(n)
kn

a nested sequence.

Vice versa, for an infinite nested sequence, the I
(n)
k form a decreasing sequence of

half open intervals which shrink down to a unique singleton {t}.

The idea behind a binomial measure is to redistribute the mass lying in I
(n)
kn

among

its two dyadic subintervals I
(n+1)
2kn

and I
(n+1)
2kn+1

in the proportions of certain given numbers

M
(n+1)
2kn

and M
(n+1)
2kn+1

. For consistency we require M
(n+1)
2kn

+M
(n+1)
2kn+1

= 1. To make this
procedure meaningful and amendable to analysis, further restrictions will be imposed
on the multipliers M

(n)
k in an instant (see (i)-(iii) below).

Definition 5.2. For given multipliers M
(n)
k the binomial measure is defined by setting

µb(I
(n)
kn

) =M
(n)
kn
·M (n−1)

kn−1
· · ·M (1)

k1
·M (0)

0 , (5.1)

and the binomial cascade is given by setting Mb(0) = 0 and

Mb((kn + 1)2−n)−Mb(kn2
−n) = µb(I

(n)
kn

). (5.2)

It is enough to define the mass (or probability) of dyadic intervals since any interval
] − ∞, t[ can be written as a disjoint union of dyadic intervals J (n) and Mb(t) =
µb(]−∞, t[=

∑

n µb(J
(n)). In particular, integrals (expectations) with respect to µb can
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FIGURE 5. Iterative construction of the binomial cascade.

be calculated as

∫

g(t)µb(dt) = lim
n→∞

2n−1
∑

k=0

g(k2−n)µb(I
(n)
k ) (5.3)

= lim
n→∞

2n−1
∑

k=0

g(k2−n)
(

Mb((k + 1)2−n)−Mb(k2
−n)
)

=

∫

g(t)dMb(t) (5.4)

To say the same in other words, (5.2) defines Mb in all dyadic points. As a dis-
tribution function, Mb is continuous from the right side. Thus, knowing the function
Mb in dyadic points is sufficient. Note thatMb is continuous at a given point t unless
M

(n)
kn(t)

= 1 for all n large.

To generate randomness inMb, we choose the various M
(n)
k to be random variables.

The above properties hold then pathwise. We will make the following assumptions on
the distributions of the multipliers M

(n)
k :

(o): Total mass. Any suitable, positive random variable may be chosen as M
(0)
0 .

(i): Conservation of mass. Almost surely M
(n)
k is positive and

M
(n+1)
2kn

+M
(n+1)
2kn+1

= 1 (5.5)

for all n and k. As we have seen, this guarantees that Mb is well defined.

(ii): Nested independence. All multipliers of a nested sequence are mutually inde-
pendent. As a consequence, for any nested sequence as in (5.2) we have

IEΩ[M
(n)
kn
· · ·M (0)

0 ] = IEΩ[M
(n)
kn

] · · · IEΩ[M
(0)
0 ] (5.6)

and similar for other moments. This will allow for simple calculations in the
sequel.



38 R. H. Riedi, Multifractal Processes

(iii): Identical distributions For all n and k

M
(n)
k

fd
=

{

M0 if k is even,
M1 if k is odd.

(5.7)

A more general version of (iii) was given in [89] to allow for more flexibility in model
fitting (see Example 7.2).

5.2 Relaxed conservation

The theory of cascades or, more properly, T -martingales [56, 10, 49, 8], provides a
wealth of possible generalizations. Most importantly, it allows to remove the depen-
dence between sibling multipliers enforced by the almost sure conservation condition
(5.5) and to require only that

(i’): Conservation in the mean

IEΩ[M0 +M1] = 1. (5.8)

Relaxing (i) into (i’) brings about various peculiarities. Some of these, such as virtual
scaling exponents require an appropriate context to be fully appreciated and we defer
their discussion to Example 5.3. Here, we relate merely the changes in the construction
that are required. Indeed, since the total increment is not preserved under iteration
the definition of the cascade (5.1) needs to be adapted to read as:

µb(I
(n)
kn

) =M
(n)
kn
·M (n−1)

kn−1
· · ·M (1)

k1
·M (0)

0 · lim
m→∞

∑

im

M
(n+1)
2kn+i1

·M (n+2)
4kn+i2

· · ·M (n+m)
2mkn+im

. (5.9)

Here, the sum runs over all nested sequences (i1, . . . , im) of length m. This sum reduces
to 1 in the case of strict conservation (5.5), which follows by induction in m. Similarly,
the expectation of the inner sum equals 1 due to (i’). Moreover, the sum forms a positive
martingale and as such converges. This makes (5.9) meaningful.

The limit, however, may degenerate and vanish almost surely. This may happen
despite the conservation of mass in the mean, because products of multipliers might be
very small with quite large probability and the binomial cascades ‘dies out’. This case
is equivalent with IE[Mb(1)] = 0, sinceMb(1) is a positive random variable, as well as
equivalent with T ′(1) ≤ 0 (see [56]). For an intuitive reasoning we mention that T ′(1)
is the almost sure dimension of the carrier of the cascade whenever it is positive (see
[56], remark 5.8 and Example 5.3). Let us assume for the remainder that T ′(1) > 0;

then IE[Mb(1)] = IE[M
(0)
0 ].

We noted thatMb(1) is in general not equal to M
(0)
0 . Similarly, µb(I

(n)
k ) is not equal

toM
(n)
kn
· · ·M (1)

k1
·M (0)

0 in general. The ‘identically distributed multipliers’ (ii), however,

imply that µb(I
(n)
kn

) is distributed as

µb(I
(n)
kn

)
d
=M

(n)
kn
· · ·M (1)

k1
· Mb(1). (5.10)
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Mandelbrot [66] callsM
(n)
kn
· · ·M (1)

k1
the low frequency part of µb(I

(n)
kn

), and the subtree
of multipliers ‘hanging off’ below the node kn –which essentially constitute the limiting
part distributed asMb(1)– the high frequency part. Since IE[Mb(1)] = IE[M

(0)
0 ] we get

IE[µb(I
(n)
kn

) |M (n)
kn
, . . . ,M

(1)
k1

] =M
(n)
kn
· · ·M (1)

k1
· IE[M (0)

0 ]. (5.11)

and IE[µb(I
(n)
kn

)] = 1/2nIE[M
(0)
0 ].

For numerical simulation (5.11) reminds us that an iterative computation of the prod-

ucts M
(n)
kn
· · ·M (1)

k1
does not provide the value of the actual process increment µb(I

(n)
k )

–as is the case with strict conservation (5.5)– but rather what its value could be expected
to be if the construction continued.

The main advantage of relaxing (5.5) is that we can use unbounded multipliers M0

and M1 such as log-normal random variables. In this particular case, the marginals of
the increment process, i.e., µb(I

(n)
k ) are exactly log-normal on all scales. For general

binomials with (i’), (ii) and (iii) it can be argued that the marginals µb(I
(n)
k ) are at

least asymptotically log-normal by applying the Central Limit Theorem provided the
logarithm of (5.2) is of finite variance.

5.3 Wavelet Decomposition

The scaling coefficients of µb using the Haar wavelet are simply

Haar: Dn,k(µb) =

∫

φ∗j,k(t)µb(dt) = 2n/2
∫ (k+1)2−n

k2−n
µb(dt) = 2n/2µb(I

(n)
k ) (5.12)

from (2.8) and (5.3). With (2.9) and (5.2) we get the explicit expression for the Haar
wavelet coefficients:

Haar: 2−n/2Cn,kn(µb) = µb(I
(n+1)
2kn

)− µb(I
(n+1)
2kn+1

) =
n
∏

i=0

M
(i)
ki
(M

(n+1)
2kn

−M
(n+1)
2kn+1

).

(5.13)
To obtain formulas for general wavelets let us start with the observation that for any

function ψ supported on [0, 1]

2−n/2Cn,kn(µb) =

∫

I
(n)
kn

ψ(2(n)t− kn)µb(dt) =M
(n)
kn
· · ·M (1)

k1
·

∫ 1

0

ψ(t′)µ
(n,kn)
b (dt′). (5.14)

This comes about from (5.2) and (5.3). Here µ
(n,kn)
b is the binomial measure constructed

from the subtree which has as its root at the node kn of level n of the original tree:

Definition 5.3. A binomial sub-cascade is defined for any given nested sequence
k1, . . . , kn by setting

µ
(n,kn)
b (I

(m)
im

) = M̃
(0)
0 M

(n+1)
2kn+i1

·M (n+2)
4kn+i2

· · ·M (n+m)
2mkn+im

(5.15)

for any nested sequence (i1, . . . , im), where M̃
(0)
0 is an independent copy of M

(0)
0 . Also,

we set M(n,kn)
b (t) := µ

(n,kn)
b ([0, t]). The generalization to cascades with conservation in

the mean is obvious, but tedious.
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With little more effort we compute the analogue to (5.14) forMb itself. In preparation
let us note that for kn = kn(t) = bt2

nc

Mb(t)−Mb(kn2
−n) = µb([kn2

−n, t]) =M
(n)
kn
· · ·M (1)

k1
M(n,kn)

b (2nt− kn). (5.16)

Let us assume now that
∫

ψ = 0 and that the function ψ is supported on [0, 1], whence

ψ2n · −k) is supported on I
(n)
k . Substituting t′ = 2nt− kn yields

∫

ψ(2nt− kn)Mb(t)dt =

∫

I
(n)
kn

ψ(2nt− kn)
(

Mb(t)−Mb(kn2
−n)
)

dt

= 2−n ·M (n)
kn
· · ·M (1)

k1
·

∫ 1

0

ψ(t′)M(n,kn)
b (t′)dt′. (5.17)

For convenience let us introduce

An,k(µb) :=

∫ 1

0

ψ(t)µ
(n,k)
b (dt) and An,k(Mb) :=

∫ 1

0

ψ(t)M(n,k)
b (t)dt. (5.18)

Lemma 5.4. Let ψ be a wavelet supported on [0, 1], and assume that the binomial
measure µb satisfies (i)-(iii) (see (5.5)). Then,

Cn,kn(µb) = 2n/2 ·M (n)
kn
· · ·M (1)

k1
· An,kn(µb), (5.19)

and if ψ is admissible (
∫

ψ = 0)

Cn,kn(Mb) = 2−n/2 ·M (n)
kn
· · ·M (1)

k1
· An,kn(Mb). (5.20)

Moreover, for both, µb and Mb the random variables An,kn and M
(i)
ki

(i = 1, . . . , n) are
mutually independent, and

An,kn
d
= A0,0 = C0,0 (5.21)

Proof
Use (2.8), (5.14) and (5.17) to obtain the formulas. Independence follows from the
nested independence (5.6). Finally, the identical distributions of the multipliers (5.7)

imply that
∫ 1

0
ψ(t)µ

(n,kn)
b (dt) is equal in distribution to C0,0 =

∫ 1

0
ψ(t)µb(dt). ♦

As a particular example we find for the Haar wavelet (use (5.13))

An,kn =M
(n+1)
2kn

−M
(n+1)
2kn+1

d
=M0 −M1 = C0,0.

The deterministic version has also been observed in [7].
It is obvious that the dyadic structure present in both, the construction of the bi-

nomial measure as well as in the wavelet transform, are responsible for the simplicity
of the computation above. It is, however, standard by now to extend the procedure to
more general multi-nomial cascades such asMc introduced in Section 5.6 (see [6, 91]).
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5.4 Multifractal Analysis of the Binomial Cascade

Almost all of the ‘classical’ scaling exponents h
(n)
k , α

(n)
k and w

(n)
k can be dealt with

explicitly for the cascades. Lemma 5.4 provides w
(n)
k readily for both, Mb and µb.

Through (5.2) one easily finds α
(n)
k and eventually h

(n)
k forMb; but increments as they

appear in α
(n)
k and h

(n)
k are not well defined for the distribution µb.

For the sake of simplicity and to retrace history let us start with the well known
multifractal analysis ofMb based on increments. We will return to the wavelet analysis
in Section 6.2. As a starter we establish the good news that for increasing processes
the partition functions obtained using α

(n)
k or h

(n)
k coincide.

Lemma 5.5. Assume that M is almost surely increasing. Then, for all q

Tα(q) = Th(q) (5.22)

and for almost all paths
τα(q, ω) = τh(q, ω). (5.23)

Proof
To understand the proof note that the task of estimating partition sums against each
other is two-fold: estimate the terms of the sums themselves, and ensure that each term
of one sum has a counterpart in the other sum.

Consider an increasing path M(t). For notational simplicity we set

∆
(n)
k =M

(

(k + 1)2−n
)

−M(k2−n) and ∆̃
(n)
k =M

(

(k + 2)2−n
)

−M((k − 1)2−n).

Recall that we have h
(n)
k = −(1/n) log2 ∆̃

(n)
k , while α

(n)
k = −(1/n) log2∆

(n)
k .

The easy part of the proof is to note that ∆
(n)
k ≤ ∆̃

(n)
k by monotony of M. Since

there is a one-to-one correspondence of terms we find, by summing over all k that
S
(n)
h (q) ≤ S

(n)
α (q) for q < 0 and S

(n)
α (q) ≤ S

(n)
h (q) for q ≥ 0. Taking limits the estimates

translate immediately into τh(q) ≥ τα(q) for q < 0 and τα(q) ≥ τh(q) for q ≥ 0. By
taking first expectation and then limits we obtain inequalities between the envelopes
T (q).

To get inequalities in the other direction (and thus establish equality) we claim first

that S
(n)
α (q) ≤ S

(n+2)
h (q) for q < 0. The difference of the indices n and n + 2 will not

matter in the limit. For each I
(n)
k there is m(k) such that

[(m(k)− 1)2−n−2, (m(k) + 2)2−n−2] ⊂ I
(n)
k , .

Obviously, ∆̃
(n+2)
m(k) ≤ ∆

(n)
k again by monotony. Since m(k) 6= m(k′) when k 6= k′ we get

for q < 0 that S
(n)
α (q) ≤

∑

k(∆̃
(n+2)
m(k) )

q < S
(n+2)
h (q), as claimed.

The last inequality is strict since there are only 2n indices of the form m(k), while

S
(n+2)
h (q) runs over the entire range m = 0, . . . , 2n+2 − 1. For this reason, the above

argument does not help for q > 0. To obtain an estimate for q > 0 we need to construct
a ‘counter-term’ ∆

(n)
k for each ∆̃

(n+2)
m . But each interval of the form [(m−1)2−n−2, (m+
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2)2−n−2] intersects exactly two I
(n)
k -s. Let us index the one with the larger increment

by k(m). We have then ∆̃
(n+2)
m ≤ 2∆

(n)
k(m) by monotony of M. Clearly, k(m) = k(m′)

is possible even for m 6= m′. But each I
(n)
k intersects only 6 intervals of the form

[(m − 1)2−n−2, (m + 2)2−n−2] and at the most 6 different values of m can lead to the

same value k(m). This yields S
(n+2)
h (q) ≤

∑

m(2∆
(n)
k(m))

q ≤ 6 · 2q · S(n)α (q) for q ≥ 0,
completing the proof. ♦

After this preparation let us now compute the multifractal envelope of a binomial
cascade for α

(n)
k . Recall that Mb((kn + 1)2−n)−Mb(kn) = µb(I

(n)
kn

). Using in sequence
(5.1) and (5.10), the nested independence (ii) (see (5.6)) and identical distributions
(5.7) we obtain

IE[S
(n)
α,Mb

(q)] =
2n−1
∑

kn=0

IE
[(

M
(n)
kn

)q

· · ·
(

M
(1)
k1

)q]

IE[(Mb(1))
q]

= IE[(Mb(1))
q] ·

n
∑

i=0

(n
i

)

IE [M q
0 ]
i IE [M q

1 ]
n−i

= IE[(Mb(1))
q] · (IE[M q

0 ] + IE[M q
1 ])

n . (5.24)

Recall that Mb(1) =M
(0)
0 almost surely if the strict conservation (5.5) holds.

Theorem 5.6. Assume that Mb is a binomial cascade for which (i’), (ii) and (iii)
hold (see (5.8)). Then, T (q) = −∞ if either of IE[M q

0 ], IE[M
q
1 ] or IE[(Mb(1))

q] is ∞.
Otherwise,

Tα,Mb
(q) = Th,Mb

(q) = − log2 IE[(M0)
q + (M1)

q] . (5.25)

Assume furthermore, that the multipliers M0 and M1 have at least some finite moment
of negative order. Then, when using increment exponents α

(n)
k , the following holds with

probability one for all a such that T ∗(a) > 0:

dim(K [a]) = dim(E [a]) = f(a) = f(a) = τ ∗(a) = F (a) = T ∗(a). (5.26)

Assume the stronger condition, that the multipliers M0 and M1 are actually bounded
away from zero. Then, when using increment exponents h

(n)
k , for any a with T ∗(a) > 0

the same equality (5.26) holds almost surely.

The theorem and (5.26) assert – in the first case– that almost all paths possess the
same entire spectra, while in the second case the spectra can be guaranteed to be equal
only in a fixed, countable set of a-s. When interested only in a finite set of a-s, however,
this result is obviously strong enough.

Remark 5.7. (Wavelet analysis and fractal support) In essence the same formu-
las (5.25) and (5.26) determine the spectra emerging from an analysis of Mb through

certain analyzing wavelet exponents w
(n)
k (see Section 6.2).

There is a natural extension of this theorem to multi-nomial cascades; however, for
multi-nomial cascades with fractal support the scaling exponents h

(n)
k and α

(n)
k have to

be adapted [91] to yield meaningful partition functions (see Section 5.6 and (5.38)). ♣
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Remark 5.8. (Degenerate cascades) Recall that binomial cascades with conserva-
tion in the mean (see i’) degenerate, i.e., IE[Mb(1)] = 0, exactly when T ′α(1) ≤ 0 (see
[56]). Since

T ′(1) = −IE[M0 log2(M0) +M1 log2(M1)] (5.27)

this condition means that ‘on the carrier’ we multiply mass per iteration step ‘in the
average’ with a number smaller than 1, and so the cascade ‘dies out’. The expression
(5.27) for T ′(1) justifies the name ‘information dimension’ (compare remark 4.6 and
Section 5.2). ♣

Proof
Formula (5.25) is already established. Corollary 4.7 shows that F (a) = T ∗(a). The
hard part of the theorem is, of course, to find a formula for dim(K [a]). Assuming finite
moments of negative order for the multipliers dim(K [a]) using the scaling exponents

α
(n)
k was computed in [8]. It is easy to verify that the formula of [8] for dim(K [a])

coincides with T ∗(a) as given in (5.25). Earlier results such as [33] (on α
(n)
k ) and [6]

(on h
(n)
k ) obtained the same formula. These papers use the more restrictive assumption

that the multipliers are bounded away from zero, but they are somewhat easier to read.
Corollary 4.1 implies (5.26) and the proof is complete. ♦

5.5 Examples

Example 5.1. (βeta Binomial) In our first example we choose the multipliers M0

and M1 to follow a β distribution, which has the density cpt
p−1(1− t)p−1 for t ∈ [0, 1]

and 0 elsewhere. Hereby, p > 0 is a parameter and cp is a normalization constant. Note
that the conservation of mass (5.5) imposes a symmetrical distribution once we decide
to have M0 and M1 = 1−M0 equally distributed.

The β distribution has finite moments of order q > −p which can be expressed
explicitly using the Γ-function. We get

β-Binomial: Tα(q) = −1− log2
Γ(p+ q)Γ(2p)

Γ(2p+ q)Γ(p)
(q > −p), (5.28)

and T (q) = −∞ for q ≤ −p. For a typical shape of these spectra see Figure 6.
In [89] binomial cascades were successfully used for modelling data traffic on the

internet. To provide more flexibility the distributions of the multipliers were allowed
to depend on the scale n (compare Example 7.2). ♠

Example 5.2. (Uniform Binomial) As a special case of the βeta binomial we obtain
uniform distributions for the multipliers when setting p = 1. The formula (5.28) sim-
plifies to Tα(q) = −1 + log2(1 + q) for q > −1. Applying the formula for the Legendre
transform (4.11) yields the explicit expression

uniform binomial: T ∗α(a) = 1− a+ log2(e) + log2

(

a

log2(e)

)

(5.29)

for a > 0 and T ∗α(a) = −∞ for a ≤ 0. ♠
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FIGURE 6. The spectrum of a binomial measure with β distributed multipliers with p = 1.66.
The formula is given by (5.28). Trivially, T (0) = −1, whence the maximum of T ∗ is 1. In
addition, every positive increment process has T (1) = 0, whence T ∗ touches the bisector.
Finally, the LRD parameter is Hvar = (T (2) + 1)/2 = 0.85) (see (7.20) and (7.25) below).

Example 5.3. (Log-normal Binomial) Another case of strong interest is the use of
log-normal distributions for the multipliers M0 and M1. Note that we have to replace
(i) by (i’) (see (5.8)) in this case since log-normal variables can be arbitrarily large, i.e.,
larger than 1. We comment on some peculiarities this might cause after computing the
spectrum.
Deterministic envelope: As the multipliers M0 and M1 of a log-normal binomial

are log-normal variables we need expressions for the moments of such variables. Let
G be a Gaussian with mean m and variance σ2, and set M = eG. Then, IE[M q] =
IE[exp(qG)] = exp(qm+ q2σ2/2).

For further simplification let us consider the case where M0 and M1 are equally
distributed. Then, their mean must be 1/2 which translates into m + σ2/2 = − ln(2).
We find from (5.25) that

log-normal binomial: Tα(q) = (q − 1)

(

1−
σ2

2 ln(2)
q

)

(5.30)

for all q ∈ IR such that IE[(Mb(1))
q] is finite. For later use note that the parabola in

(5.30) has two zeros: 1 and qcrit = 2 ln(2)/σ2.
Degenerate case and tail of marginals It is known also for more general cascades

that IE[Mb(1)] = 0 if and only if T ′(1) ≤ 0 [56]. Since Mb(1) is a positive random
variable this occurs if and only if Mb(1) = 0 almost surely, and we say that the
cascade is degenerate.

To ensure non-degenerate cascades for the remainder we assume T ′(1) > 0. Due to
the parabolic shape of (5.30) this condition may be expressed easily as qcrit > 1, i.e.,
σ2 < 2 ln(2).

Assuming that T ′(1) > 0, [56] shows that T ′(1) gives the almost sure dimension
of the carrier of the cascade. Since paths with Mb(1) = 0 have an empty carrier we
conclude that actually Mb(1) 6= 0 almost surely, not only with positive probability.
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Always assuming T ′(1) > 0, another result of [56] states that IE[(Mb(1))
q] < ∞

exactly for q < qcrit. Moreover, [66] conjectures and [75] proves the marginal tail be-
havior P [Mb(1) > x] ∼ x−qcrit . We will return with an explanation in an instant.
For the moment we conclude that (5.30) is valid exactly for q < qcrit, for all other q
T (q) = −∞.
Legendre spectrum: Since T (q) is differentiable exactly for q < qcrit we may obtain

its Legendre transform implicitly from (4.11) for a = T ′(q) with q < qcrit, i.e., for all
a > acrit = T ′(qcrit) = σ2/(2 ln(2)) − 1. Eliminating q from (4.11) yields the explicit
form

T ∗α(a) = 1−
ln(2)

2σ2

(

a− 1−
σ2

2 ln(2)

)2

(a ≥ acrit). (5.31)

For a ≤ acrit the Legendre transform yields T ∗(a) = a · qcrit. Thus, at acrit the spectrum
T ∗ crosses over from the parabola (5.31) to its tangent through the origin with slope
qcrit (the other tangent through the origin is the bisector).

Since qcrit > 1 we have acrit < 0 and the spectrum possesses negative a with finite,
though negative T ∗(a) (compare with the ‘uniform’ binomial cascade above which has
no such a). We return to this fact in an instant. The two zeros of T ∗ are both positive
for any choice of σ, since T ∗ is —apart from the linear part for a < acrit– a parabola
which touches the bisector and has a maximum value of 1.
Rescaled histograms: The log-normal framework allows also to calculate F (a)

explicitly. We use the opportunity to demonstrate which rescaling properties of the
marginal distributions of the increment processes ofMb are captured in the multifractal
spectra.

First, note that − ln(2) · α(n)k = (1/n) ln(µb(I
(n)
k )) (see (2.13) and (5.10)) is the sum

of n independent Gaussian random variables (1/n) ln(M
(n)
k ) of mean m/n and variance

σ2/n2, plus an independent additive term distributed as (1/n) ln(Mb(1)). To keep
computations simple we neglect this last term; indeed, it will converge in distribution
to 0 since ln(Mb(1)) has a Weibull tail and, thus, will not affect the distribution of α

(n)
k

in the limit. In summary, this amounts to approximating − ln(2) · α(n)k by a Gaussian
of mean m and variance σ2/n. The mean value theorem of integration gives

PΩ[|α
(n)
k − a| < ε] '

1
√

2πσ2/n

∫ ln(2)(−a+ε)

ln(2)(−a−ε)

exp

(

−
(x−m)2

2σ2/n

)

dx

=
1

√

2πσ2/n
ln(2) · 2ε · exp

(

−
(− ln(2)xa,n −m)2

2σ2/n

)

with xa,n ∈ [a − ε, a + ε] for all n. To compute F (a) we first need to sum over k (see
(3.22)); however, the expression is identical for all k. Next, keeping only the exponential
term in n and substituting m = −σ2/2− ln(2) we find for large n

1

n
log2

(

2nPΩ[|α
(n)
k − a| < ε]

)

' 1−
ln(2)

2σ2

(

xa,n − 1−
σ2

2 ln(2)

)2

. (5.32)

Taking finally the limit of ε→ 0 we see that F (a) equals the right hand side of (5.31)
for all a, and thus T ∗(a) = F (a) for all a = T ′(q) as stated in corollary 4.7. On the
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other hand, T ∗(a) > F (a) for a < acrit. The above computation shows impressively how
well adapted a multiplicative iteration with log-normal multipliers is to the multifractal
analysis (or vice versa): F extracts, basically, the exponent of the Gaussian kernel.

In the range of a with F (a) > 0 —where equality in the multifractal formalism is
known to hold forMb (see (5.26))— these features can be measured or estimated from
a ‘typical’ realization via the re-normalized histogram, i.e., the grain based multifractal
spectrum f(a). This is a property which could be labelled with the term ergodicity.
Note, however, that classical ergodic theory deals with observations along an orbit
of increasing length while f(a) is in terms of a sequence of orbits. Also recall that
estimating the negative F (a) requires using a large array of realizations of the process
(compare remark 3.17).
Partition function:
Since almost all paths of cascades are increasing, the scaling exponents α

(n)
k must

eventually become positive for any such path and τα(q) must be increasing. The de-
terministic envelope Tα(q), on the other hand, has a parabolic shape where it is finite.
So, τ(q) > T (q) for q > (1 + qcrit)/2, i.e., for q beyond the maximum of T (q).
Log-normal marginals: The log-normal binomial enjoys the advantage of hav-

ing exactly log-normal marginals µb(I
(n)
k ) since the product of independent log-normal

variables is again a log-normal variable.
Finally, we return to the various issues we have left unresolved above.
Negative (virtual) exponents: The most puzzling consequence of the absence of

strict conservation of mass resides in the presence of negative a with finite T ∗(a). The
apparent paradox of such a was first mentioned and studied in [66]: negative exponents
seem to indicate that increments over smaller child-intervals could be larger than the
increment over the parent-interval which is impossible for increasing paths.

The paradox was explained away in [66] with the observation that virtual exponents
should be interpreted not as a property of the limiting cascade and the actual process,
but rather as a property of the iterative cascade construction as the construction pro-
gresses, what we expect an increment to be over an interval might increase (recall that
(5.11) is not the actual increment but its expectation).

Here, we further demystify virtual exponents in providing an interpretation in terms
of the actual process, not only its construction. As we have seen above and as follows
from corollary 4.7 with more generality we have F (a) = T ∗(a) for a = T ′(q). For such
a F (a) is thus finite, and IE[N (n)(a, ε)] > 0. If a is in addition virtual, then F (a) < 0

and the expected number of α
(n)
k ' a decays rather rapidly as resolution n increases

but never reaches zero. Thus, even for a large n an increment larger than 1 over an
interval of length 2−n can be observed, though extremely rarely, leading to a negative
α
(n)
k . This does not contradict the fact that for any fixed path all α

(n)
k will eventually

(for large n) be positive.
♠

Remark 5.9. (Deterministic envelope: shape and interpretation)
There are several distinct parts of the ‘Legendre spectrum’ T ∗(a).
Looking first at T ∗, the positive part (where T ∗(a) > 0) relates most directly to local
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properties of individual paths. For cascades, it provides dim(E [a]), the dimension of

sets with equal local behavior as measured through s
(n)
k , as well as f(a) and τ ∗(a); in

general it provides at least an upper bound. This part of T ∗(a) lies, obviously, between
its two zeros which in turn correspond to the slopes of the two tangents at T (q) through
the origin (recall that these functions are concave and apply the Legendre formalism
(4.7)).

The remaining T ∗(a), i.e., the negative ones, can not be interpreted as actual dimen-
sions. However, through the LDP of (4.11) and (3.23) they still provide information on
particularly rare degrees a of local scaling. Sometimes they are referred to as ”negative
dimensions”.

Second, let us discuss now the values of a which may appear in the spectrum. The
not immediately intuitive ones are the ”latent” exponents (a with T ∗(a) < 0) and the

”virtual” ones (a < 0). For the scaling exponents α
(n)
k and h

(n)
k of increasing processes

all virtual exponents are necessarily latent. This follows from T (1) = 0 which implies
that T ∗(a) ≤ a (compare remark 4.6); indeed, no increasing path can show a negative
increment-exponent in the limit and virtual exponents can exist here only as ‘rare
events’ (compare remark 3.17). The name ‘virtual’ has to be understood in this context.

For wavelet-based exponents w
(n)
k and/or non-increasing processes, however, negative

a may occur pathwise and very naturally (compare Section 6.1).
♣

5.6 Multiplicative Schemes beyond Dyadic Structure

The dyadic structure inherent to the binomial cascades can at times be too restrictive.
The broader class of ‘self-similar cascades’ offers more flexibility going beyond dyadic
and even towards random subdivision of intervals. Despite this added freedom one can
think of cascades in principle as various types of ‘muscles’ hanging off an always present
tree-skeleton. Indeed, the tree at the core of all cascades provides common structure
and a central tool in the multifractal analysis, enabling an approach similar to the
binomial case.

It should not go without mentioning, though, that various technical difficulties arise
when dealing with this more general framework, such as with the moments of negative
order for cascades with fractal support. With regard to this particular problem we
describe here a method which relies on modifying the scaling exponents h

(n)
k as in [91].

For wavelet exponents, the way to go is to modify the partition function by employing
the lines of maxima, pioneered in [78]. It is notable that both approaches can be

considered as a multifractal analysis with new scaling exponents, related to h
(n)
k and

w
(n)
k respectively; consequently, the multifractal formalism of section 4 still holds for

these modified methods.

Example 5.4. (Multi-nomial cascades) The first most obvious generalization of
the binomial measure is to split intervals into c subintervals. Making the obvious ad-
justments such as organizing the multipliers now in a c-ary tree and adapting (i)-(iii)
(see (5.5)) this leads to a measure µc.
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Towards understanding the multifractal properties of µc choosem such that 2n ' cm.
Then, a typical interval of length 2−n will have a µc-mass approximately equal to
M

(0)
0 ·M (1)

k1
· · ·M (m)

km
where ki indicates now position on a c-ary tree. As in (5.25) we

find IEΩ[S
(n)
α,Mc

(q)] ' (IE[(M0)
q + . . .+ (Mc−1)

q])m. Since m/n ' log(2)/ log(c) this
leads to

Tα,Mc
(q) = − logc IE[(M0)

q + . . .+ (Mc−1)
q] (5.33)

This formula is indeed correct for all q ∈ IR and equality holds in the multifractal
formalism provided all the multipliers are zero with probability zero.
Cascades with fractal support and scaling exponents: A true advantage of

splitting intervals into more than two subintervals resides in the possibility to leave some
of these subintervals without mass: split intervals into c′ > c subintervals and distribute
mass in the usual multiplicative manner but only among selected c subintervals. This
construction can be viewed as an extreme case of a c′-nomial cascade where now certain
multipliers are set to zero almost surely. This leads to conjecture that

TMc
(q) = − logc′ IE[(M0)

q + . . .+ (Mc−1)
q] (5.34)

Due to the construction the limiting measure has a fractal support of dimension
−T (0) = log(c)/ log(c′) < 1. This might be of practical advantage: when modelling
rain data, e.g., the actual events of interest occupy a very small set on the time axis.

It may be ’shocking’ news at first sight that equality in the multifractal formalism
in the sense of theorem 5.6 holds no longer for cascades with fractal support (see [91]).
What breaks down is the partition function: Unless c is a power of 2, (5.34) holds for

exponents h
(n)
k and α

(n)
k only for q > 0 and

τα(q) = Tα(q) = −∞ (q < 0) (5.35)

due to boundary effects which produce exponents that are exceptionally large, yet finite.
As is demonstrated in [91] (see also [84]), a simple remedy for increasing processes M

is to exclude the dyadic intervals I
(n)
k over which M is constant and to set

λ
(n)
k :=

{

h
(n)
k if α

(n)
k 6=∞

∞ otherwise.
(5.36)

In other words, 2−nλ
(n)
k is the increment of M over the interval I

(n)
k−1 ∪ I

(n)
k ∪ I(n)k+1 if M

has a strictly positive increase over the middle interval I
(n)
k ; ifM is flat over the middle

interval I
(n)
k then 2−nλ

(n)
k = 0 and there is no contribution of I

(n)
k to the partition sum.

Let us check that this procedure is an extension of the usual analysis. First, since
limits of h

(n)
k and λ

(n)
k (n → ∞) are equal we have E

[a]
h = E

[a]
λ etc. Second, if M is

strictly increasing then h
(n)
k = λ

(n)
k even for all n and k, and τλ = τh. Finally, for general

cascades and positive q (which correspond to small a of the spectrum) the partition
function has not changed either:

Lemma 5.10. [91] Assume that M is increasing. Then,

τλ(q) = τh(q) = τα(q) (q ≥ 0). (5.37)
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To obtain the multifractal properties ofMc take expectations in the proofs of [91]. It
follows that Tλ,Mc

(q) is the unique solution of (5.34) for all q. From [33, 6, 8] it follows
then that the dimension based spectra are equal to T ∗λ where it is positive. In short,
equality holds in the multifractal formalism in the following sense: For multi-nomial
cascades

dim(K
[a]
h ) = dim(K

[a]
λ ) = fλ,Mc

(a) = τ ∗λ,Mc
(a)

as
= T ∗λ,Mc

(a) (5.38)

wherever the right hand side is positive.
As is shown in [84, 91] using the coarse singularity exponent λ

(n)
k provides a reliable

estimation of the multifractal structure of distributions with fractal support. Using
h
(n)
k or α

(n)
k , on the other hand, leads to numerical instability when estimating τ(q) for

negative q. ♠

A more radical way of leaving the binary geometric structure behind is by random-
izing it. To this end we consider first the inverse of binomials. Inverse measures can be
defined in all generality (see [72, 94]) allowing for further flexibility.

Example 5.5. (Random geometry: Inverse measures) Let M†
b be the inverse

function of a binomial distribution function Mb, in other words, Mb(M
†
b(t)) = t.

Then,M†
b is almost surely increasing and continuous. So, it defines a random measure

µ†b which can be described as follows: for all n, the unit interval is divided into 2n

subintervals J
(n)
k of random lengths M

(0)
0 ·M (1)

k1
· · ·M (n)

kn
and with µ†b mass 1/2n each.

To motivate a formula for T (q) in this case let us note that 2nγ · IE[S(n)(q)] should

tend to 0 for γ > T (q), resp. to ∞ for γ < T (q). Noting that 2nγ = |I(n)k |−γ , we may

equivalently study IE[
∑

µ†b(J
(m)
k )q|J (m)k |−γ ] for finer and finer partitions of [0, 1] into

intervals J
(m)
k . Therefore, we iteratively split the largest interval of such a partition,

say J
(u)
v , into its subintervals J

(u+1)
2v and J

(u+1)
2v+1 which have lengths Mscaleuo2v · |J

(u)
v |

and M
(u+1)
2v+1 · |J

(u)
v |. The contribution of J

(u)
v to the partition sum was µ†b(J

(u)
v )q|J (u)v |−γ ;

the iteration step will replace it by µ†b(J
(u+1)
2v )q|J (u+1)2v |−γ + µ†b(J

(u+1)
2v+1 )

q|J (u+1)2v+1 |
−γ which

can be written as

µ†b(J
(u)
v )q|J (u)v |−γ

(

2−q(M
(u+1)
2v )−γ + 2−q(M

(u+1)
2v+1 )−γ

)

. (5.39)

This leads us to pose that TM†
b
(q) is the unique solution of

IE
[

(1/2)q(M0)
−T (q) + (1/2)q(M1)

−T (q)
]

= 1. (5.40)

Indeed, during iteration IE[
∑

µ†b(J
(m)
k )q|J (m)k |−γ ] will decay, resp. increase (on the av-

erage) according to whether γ > T (q) or γ < T (q), as required. ♠

Example 5.6. (Statistically self-similar measures) Combining above examples

leads to defining a random binomial Mc by splitting intervals J
(n)
k iteratively into c

subintervals J
(n+1)
ck , . . . , J

(n+1)
ck+c−1 with length |J (n+1)ck+i | = L

(n+1)
ck+i |J

(n)
k | and mass µc(J

(n+1)
ck+i ) =

M
(n+1)
ck+i µc(J

(n)
ck ). In the most simple case, one will require conservation of mass, i.e.,
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M
(n+1)
ck + . . .+M

(n+1)
ck+c−1 = 1, but also L

(n+1)
ck + . . .+L

(n+1)
ck+c−1 = 1 which guarantees that

µc lives everywhere. Assuming the conditions (ii) and (iii) (see (5.7)) hold for both, the

length-multipliers L
(n)
k as well as the mass-multipliers M

(n)
k we find that TMc

(q) is the
unique solution of

IE
[

(M0)
q(L0)

−T (q) + . . .+ (Mc−1)
q(Lc−1)

−T (q)
]

= 1. (5.41)

A rigorous proof of (5.41) is obtained by ‘taking expectations’ in the proof of [91, Prop
14]. Doing so shows, moreover, that T (q) assumes a limit in these examples. ♠

In the broader context of Example 5.6 it is easy to recognize that all the examples
above are merely special cases of (5.41). This confirms, in particular, (5.40).

Example 5.7. (Cascades in the wavelet domain) As the concluding example we
mention that, with regard to (5.14), one may choose to model directly the wavelet coef-
ficients of a process in a multiplicative fashion in order to obtain a desired multifractal
structure. First steps in this direction have been taken in [1]. ♠

A final remark is in order.

Remark 5.11. (Stationary increments:) Due to property (iii) the binomial cascade
has incrementsM ((k + 1)2−n)−M(k2−n) which have identical distributions provided
M0 andM1 are equally distributed. This first order stationarity of dyadic increments is
sometimes sufficient to obtain interesting results (see lemma 8.8). On the other hand,
these increments are clearly not second order stationary.

However, to obtain true stationarity of increments one has to leave rigid multi-
nomial subdivisions towards stationary ones, e.g., produced by Poisson arrivals. For
some appealing examples see [14, 70, 74, 105]. With these models one trades, potentially,
appealing statistical properties against more involved analysis. ♣

6 Wavelet based Analysis

In this section we start with a note on the appealing connection between wavelet-
based multifractal analysis and classification of functions using regularity spaces such
as Besov spaces. Then, we revisit the binomial cascades 3with wavelets and demonstrate
a simple relation between the multifractal properties of a process and its (distributional)
derivative.

6.1 Wavelet Coefficients and Besov Spaces

Besov spaces are function spaces tailored for studying global regularity. They have
become of fashion recently since an elegant description in terms of wavelet coefficients
(see [76]) has become available. In [76] it is shown that the norm of the Besov space
Bs
v(L

u) of a process with wavelet coefficients Cj,k is equivalent, in the notation of (2.7),
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to
(

∑

k

|D0,0|
v

)1/v

+





∑

j≥J0

(

∑

k

2jsu2−j
∣

∣2j/2Cj,k
∣

∣

u

)v/u




1/v

. (6.1)

Roughly speaking, this norm measures the smoothness of order s in Lu, where v is an
additional parameter for making finer distinctions in smoothness.

A connection between multifractal theory and Besov spaces has been established in
[30]. Here, we note that multifractal analysis (using convenient orthogonal wavelets)
can be viewed as determining in which Besov spaces the analyzed process lies [89].

Indeed, by the very definition (3.10) of the partition function with s
(n)
k = w

(n)
k (see

(2.11)) the Bs
v(L

u) norm of a path of the process is finite if su < τw(u) + 1 and infinite
if su > τw(u) + 1 (see [53] for similar results). In other words, pathwise

sup{s : Y ∈ Bs
v(L

u)} =
τw(u) + 1

u
. (6.2)

Strictly speaking s must be smaller than the regularity r of the wavelet ψ for (6.1)
and (6.2) to hold. In other words, at least r vanishing moments as well as r continuous
derivatives of ψ are required. Given this, Besov norms do not depend on the choice of
the wavelet basis up to bounded factors. Since the multifractal analysis using wavelets
determines the Besov spaces that contain the signal, we conclude that τw(u) will not
depend on the choice of the wavelet, provided the above regularity conditions are met.

6.2 The Binomial Revisited with Wavelets

The binomial measure µb is not a function or process in the usual sense, but a random
distribution. Thus, increment exponents such as h

(n)
k and α

(n)
k are not well defined for µb

and we have to rely on wavelet exponents w
(n)
k to reveal the local scaling structure. As

is often the case, the deterministic envelope is the most simple spectrum to compute.
Taking into account the normalization factors in (2.11) when using lemma 5.4, the
calculation of (5.24) carries over to give

IE[S(n)w,µb
(q)] = 2nqIE[|C0,0|

q] · (IEΩ[M
q
0 ] + IEΩ[M

q
1 ])

n .

Similar manipulations work for S
(n)
w,Mb

. In summary:

Lemma 6.1. Provided the wavelet coefficients IE[|C0,0(µb)|
q] resp. IE[|C0,0(Mb)|

q] and
the moments IE[M q

0 ], IE[M
q
1 ] and IE[(Mb(1))

q] are all finite we have

Tw,µb(q) + q = Tw,Mb
(q) = Tα,Mb

(q), (6.3)

T ∗w,µb(a− 1) = T ∗w,Mb
(a) = T ∗α,Mb

(a). (6.4)

Imposing additional assumptions on the distributions of the multipliers we may also
control w

(n)
k (µb) themselves and not only their moments. To this end, we should be able

to guarantee that the (Haar) wavelet coefficients don’t decay too fast (compare (2.10)),
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i.e. the random prefactor RHS in (5.13) and (5.14) doesn’t become too small. Indeed, it
is sufficient to assume that there is some ε > 0 such that |C0,0| ≥ ε almost surely. (recall

that C0,0 = 2M0−1 for the Haar wavelet.) Then for all t, (1/n) log(
∫

ψµ
(n,kn)
b (dt))→ 0,

and with (5.14)

wµb(t) = lim inf
n→∞

−
1

n
log2

(

2n/2|Cn,kn |
)

= αMb
(t)− 1, . (6.5)

This relation agrees with (6.4) and appeals to one’s intuition: the singularity exponents
of a ‘sufficiently nice’ process and its (distributional) derivative should differ by 1, as
is demonstrated here with binomial cascades. We should point out, though, that this
simple rule-of-thumb may fail miserably in the presence of ‘chirps’, even for increasing
processes. More precise information on how scaling properties change locally —such as
provided by the ‘two-microlocalization’ analysis [51, 50]— is required to fully under-
stand how taking derivatives affects the local Hölder regularity (see also Section 6.3).

Corollary 6.2. Assume that µb is a binomial measure satisfying (i)-(iii) (see (5.5)).
Assume furthermore, that the random variables An,k(µb) resp. An,k(Mb) are uniformly
bounded away from 0. Then, equality holds in the multifractal formalism for the wavelet
based spectra of µb, resp. Mb, meaning that

dim(K [a]
w,µb

)
a.s.
= fw,µb(a)

a.s.
= τ ∗w,µb(a)

a.s.
= T ∗w,µb(a) = T ∗α,Mb

(a+ 1), (6.6)

respectively
dim(K

[a]
w,Mb

)
a.s.
= fw,Mb

(a)
a.s.
= τ ∗w,Mb

(a)
a.s.
= T ∗w,Mb

(a). (6.7)

For deterministic binomials τw,µb has been calculated in [7]. Note that for the Haar

wavelet An,k =M
(n+1)
2k −M

(n+1)
2k+1 = 2M

(n+1)
2k − 1.

Requiring that An,k should be bounded away from zero in order to ensure (6.5),
though satisfied in some simple cases, seems unrealistically restrictive to be of prac-
tical use. A few remarks are in order, then. First, this condition can be weakened to
allow arbitrarily small values of An,k as long as all its negative moments exist. This
can be shown by an argument using the Borel-Cantelli lemma. Furthermore, if one
drops (iii) and allows the distributions of the multipliers to depend on scale (compare
Example 7.2), then An,k has to be bounded away from zero only for large n. In applica-
tions such as network traffic modelling one finds indeed that on fine scales An,k is best
modelled by discrete distributions on [−1, 1] with large variance and no mass around
0.

Another way out is to avoid small wavelet coefficients at all in a multifractal analysis.
More precisely, one would follow [7, 53] and replace Cn,kn in the definition of w

(n)
kn

(2.11)
by the maximum over certain wavelet coefficients ‘close’ to t. Since this procedure
amounts to nothing more than introducing a yet better adapted scaling exponent w̃,
the multifractal formalism still holds in the sense of Section 4. Towards establishing
equality between spectra [53] gives conditions under which the spectrum τ ∗w̃,µb(a) based

on this new exponent w̃ agrees with the ‘classical Hölder exponent spectrum’ dim(E [a])

based on h
(n)
k (Mb).
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6.3 Multifractal Properties of the Derivative

Corollary 6.2 establishes for the binomial cascade what intuitively appears to be of
general truth: taking derivatives should decrease the local Hölder regularity by 1. This
section is devoted to a few words of warning in this context. Let us start with a simple
example where the given intuitive rule of thumb fails utterly and continue then to
discuss a practical but powerless approach to studying the multifractal properties of
the derivative.

As indicated in the last section, the above simplistic rule of thumb fails in the presence
of chirps [51]. For an example consider the function M(t) = 5t + t3 sin(1/t). Since its
derivativeM′ is strictly positive, this is a strictly increasing function. Furthermore, the
local Hölder regularity ofM at t = 0 is of order 3, i.e., HM(0) = 3, since |M(t)−5t| ≤
|t|3 is the best polynomial approximation in the sense of (2.1). Its derivative, however,
showsHM′(0) = 1 since it can be approximated as |M′(t)−5| ≤ |t|. The local regularity
dropped, thus, by 2. This is due to the strong oscillations, also called a chirp, present
at t = 0. To fully understand and assess how the differential operator affects the local
Hölder regularity, one has to get acquainted with the ‘two-microlocalization’ analysis
[51, 50].

Now, to explore the role of wavelets in this matter we place ourselves in the framework
where one cares less for a wavelet representation but where one’s interests lie solely
in an analysis of the oscillatory behavior. Therefore, we will employ analyzing mother
wavelets ψ which are typically not orthogonal, such as the derivatives of the Gaussian
kernel exp (−t2/2) which were used to produce Figure 7.

To connect wavelet coefficients of a process and its derivative we use integration by
parts. For a continuous measure µ on [0, 1] with distribution functionM(t) = µ([0, t))
and a continuously differentiable function g this reads as

∫

g(t)µ(dt) = lim
n→∞

2n−1
∑

k=0

g(k2−n)
(

M((k + 1)2−n)−M(k2−n)
)

= lim
n→∞

2n−1
∑

k=0

M(k2−n)
(

g((k − 1)2−n)− g(k2−n)
)

+M(1)g(1− 2−n)−M(0)g(−2−n)

= M(1)g(1)−M(0)g(0)−

∫

M(t)g′(t)dt (6.8)

where we alluded to (5.3) and regrouped terms. If M has a derivative, then µ(dt) be-
comesM′(t)dt and (6.8) reduces to the usual rule of integration by parts. Now, setting
g(t) = 2n/2ψ(2nt−k) for a smooth analyzing wavelet ψ we have g′(t) = 23n/2ψ′(2nt−k)
and using that M(1) = 1 and M(0) = 0, we get

Cn,k(ψ, µ) = 2n/2ψ(2n − k)− 2n · Cn,k(ψ
′,M). (6.9)

Estimating 2n − kn = 2n − bt2nc ' (1 − t)2n and assuming exponential decay of ψ(t)
at infinity allows to conclude

wψ,µ(t) = −1 + wψ′,M(t). (6.10)
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FIGURE 7. Demonstration of the multifractal behavior of a binomial measure µb (left) and
its distribution function Mb (right). On the top a numerical simulation, i.e., (5.2) on the left
and Mb(k2

−n) on the right for n = 20. In the middle the moduli of a continuous wavelet
transform [23] where the second derivative of the Gaussian was taken as the analyzing wavelet
ψ(t) for µb, resp. the third derivative ψ′ for Mb. The dark lines indicate the ‘lines of maxima’
[53, 7], i.e., the locations where the modulus of

∫

ψ(2jt− s)µb(dt) has a local maximum as a
function of s with j fixed. On the bottom a multifractal analysis in three steps. First, a plot

of logS
(n)
w (q) against n tests for linear behavior for various q. Second, the partition function

τ(q) is computed as the slopes of a least square linear fit of logS(n). Finally, the Legendre
transform τ ∗(a) of τ(q) is computed following (4.7). Indicated with dashes in the plots of
τ(q) and τ ∗(a) of µb are the corresponding function for Mb, providing empirical evidence for
(6.3), (6.4), and (6.10).

Corollary 6.3.

E
[a+1]
ψ,µ = E

[a]
ψ′,M fψ,µ(a) = fψ′,M(a+ 1), τ ∗ψ,µ(a) = τ ∗ψ′,M(a+ 1). (6.11)

This is impressively demonstrated in Figure 7. We should note that ψ ′ has one more
vanishing moment than ψ which is easily seen by integrating by parts. Thus, it is natural
to analyze the integral of a process, here the distribution function M of the measure
µ, using ψ′ since the degree of the Taylor polynomials of M are typically by 1 larger
than the ones of µ, and the analyzing wavelet should be blind to these polynomials.

In the light of the fact that (6.11) holds even in the presence of chirps, the lesson
to retain is that the multifractal analysis of µ = M′ through ψ is equivalent to the
analysis ofM through ψ′ and can not serve to discover chirps. It is notable, then, that
corollary 6.2 uses the same wavelet for both, µb and Mb.

Remark 6.4. (Visibility of singularities and regularity of the wavelet)
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It is remarkable that the Haar wavelet provides us with the full spectra of both,
the binomial Mb and its distributional derivative µb. This seems to contradict rules
of thumb saying that a wavelet cannot detect degrees of regularity larger than the
number of vanishing moments. In [78] it is even advocated that the partition function
τ(q) should be used only for q ∈ [0, 1].

To resolve the apparent paradox recall the peculiar property of multiplicative mea-
sures which is to have constant Taylor polynomials in the points of interest. So, cascades
will reveal their scaling structure to any analyzing wavelet with

∫

ψ = 0. No higher
regularity, i.e.,

∫

tkψ(t)dt = 0 is required despite the fact that points of regularity
α(t) > 1 are present. For another example of a signal which is more regular than the
basis elements it is composed of see [55].

The mentioned rule has, then, to be corrected to read as: wavelet cannot detect
singularities in points with approximating polynomial Pt of degree higher than its
regularity. ♣

7 Self-similar Processes

So far we have studied multiplicatively constructed processes which exhibit particular
rescaling properties such as the tree structure of the binomial cascade. Let us turn now
to the related concept of so-called ‘statistical self-similarity’.

7.1 Statistical Self-similarity

For details on the following short introduction to self-similar processes see [100] or [97,
p 309]. Here is some notation used throughout: I is either IR, IR+ = {t ≥ 0} or {t > 0};
V is a self-similar process with increments U .

Definition 7.1. A real-valued stochastic process {Vt : t ∈ I} is called self-similar with
index H > 0 if and only if for all a > 0

V (at)
fd
= aHV (t), (7.1)

in the sense of finite dimensional distributions, in other words, if and only if for any
a > 0, any m ∈ IIN and any t1 < t2 <, . . . , < tm

(V (at1), , . . . , , V (atm))
d
= (aHV (t1), , . . . , , a

HV (tm)).

{V (t)} is said to have stationary increments if and only if

V (s+ t)− V (t)
fd
= V (s)− V (0).

A complex valued process is self-similar if and only if both, real and imaginary part are.
If a process is both self-similar and has stationary increments we say it is H-sssi.
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It follows from the definition that V (0) = 0 a.s. for any self-similar process. Self-
similar processes themselves are not stationary; as a matter of fact, V (t) is self-similar
if and only if e−tHV (et) is stationary. It is helpful, therefore, to add the assumption
of stationary increments. As an immediate consequence of the definitions, an H-sssi
process is centered, and so are its increments, unless it has infinite expectation:

IEV (1) = IE[V (1)− V (0)] = IE[V (2)− V (1)] = (2H − 1)IEV (1).

7.2 Examples

If one assumes finite variance, then the covariance is easily computed using (7.1) and
stationarity of increments as follows

r(s, t) = IEV (s)V (t) =
1

2

(

IEV (t)2 + IEV (s)2 − IE(V (t)− V (s))2
)

=
1

2
(|t|2H + |s|2H − |t− s|2H)IEV (1)2. (7.2)

Since this expression must be non-negative definite it follows that 0 < H ≤ 1. For
H = 1 one finds

IE(V (t)− tV (1))2 = IEV (t)2 − 2t · IEV (t)IEV (1) + t2IEV (1)2 = 0

and, thus, V (t) = tV (1) a.s. for all t. Often one studies the increments of an H-sssi
process. Therefore, let us set

Uk := V (k + 1)− V (k).

Here, we choose the fixed lag or step 1 for convenience only. We find, using the expres-
sion for r(s, t)

rU(k) := IEΩ[U(n+ k)U(n)] =
IEΩ[V (1)2]

2

(

|k − 1|2H − 2|k|2H + |k + 1|2H
)

. (7.3)

Gaussian case

As mentioned before, the auto-correlation function (7.2) has to be non-negative definite
which restricts H to (0, 1]. On the other hand, for every such function r there is a zero
mean Gaussian process defined through its finite dimensional distributions [97, p 318]:

IE[exp i
m
∑

k=1

θkV (tk)] = exp

(

−
1

2

m
∑

k=1

m
∑

l=1

r(tk, tl)θkθl

)

.

It can be shown that this process is unique and that it is always possible to choose
a version with almost surely continuous paths.

Definition 7.2. The unique Gaussian and H-sssi process with 0 < H ≤ 1 is called
fractional Brownian motion (fBm). We will denote it by BH . Its increment processes
{B(t+ δ)−B(t) : t ∈ I} are called fractional Gaussian noise (fGn).
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The caseH = 1/2 is notable in this context as it is the only case where the increments
are independent. {B1/2(t)} is called Brownian motion, or, to make a clear distinction,
Wiener motion (WM). FBm has been introduced by Kolmogorov and studied by Lévy,
and Mandelbrot and van Ness [71] who gave the following representation as a stochastic
integral over Wiener motion

BH(t) =
1

Γ(H + 1
2
)

∫ ∞

−∞

[(t− s)
H−1/2
+ − (−s)H−1/2+ ]dB1/2(s), (7.4)

where (x)+ = max(x, 0).
Of particular interest here are the fractal properties of the paths of fBm. It is well

known that its paths assume almost surely everywhere the exact Hölder regularity of
degree H:

Theorem 7.3 (Adler). Let [a, b ] be a compact interval.
a) [5, Thm. 8.3.1.] For every η > 0 there is an almost surely finite, positive random
variable A such that with probability one for every s, t ∈ [a, b] and |s− t| small enough

|BH(t)−BH(s)| ≤ A|s− t|H−η

b) [5, (8.8.26)] For each η > 0 and small enough h > 0

sup{|BH(t)−BH(s)| : |s− t| ≤ h} ≥ KhH+η

for every t ∈ [a, b] and every K <∞, with probability one.

Stable case

If we drop the assumption of finite variance we fall on the γ-stable, H-sssi processes as
the next larger class. A symmetrical γ-stable random variable V , in short V ∼ SγS(σ),
is defined through its characteristic function:

IE[exp(iθV )] = exp(−σγ|θ|γ + iµθ) for 0 < γ ≤ 2.

It follows, that the sum V + V ′ of independent SγS variables is again SγS with
σγV+V ′ = σγV + σγV ′ .

In general, no closed form for the distribution function is known. Special known
cases include the Normal distribution (γ = 2) and the Cauchy distribution (γ = 1). It
is known, though, that the tails decay with a power-law for 0 < γ < 2, i.e. there is a
constant Cγ depending only on γ such that [97, p. 16]

lim
λ→∞

λγP [V > λ] = lim
λ→∞

λγP [V < −λ] = Cγ · σ
γ. (7.5)

Consequently, the absolute moments of V exist only up to order γ. For q > 0: IE|V |q <
∞ if and only if q < γ. For γ = 2, the distribution is a Gaussian which has finite
moments of all positive orders.
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Let us denote H-sssi, SγS-stable processes by LH,γ . Applying the definitions we find

LH,γ(t)− LH,γ(s) ∼ SγS(|t− s|H · σV (1))

Since we may write L(t) − L(s) + L(s) − L(u) = L(t) − L(u), the increments will be
independent if and only if H = 1/γ, which generalizes the Gaussian case γ = 2. A
H-sssi, SγS-stable process with H = 1/γ is called Lévy stable motion and we denote
it by LH := LH,1/H .

Finally, it can be shown that necessarily H ≤ max(1/γ, 1). Except for the Gaussian
case γ = 2 the H-sssi, γ-stable motion are not unique and their paths are discontinuous
with probability one. For H < 1, a class of fractional stable motions, so-called linear
fractional stable motions, can be constructed explicitly through integral representations
similar to (7.4), where the exponents of the integration kernel are now H−1/γ instead
of H − 1/2 and where the integrating process is Lévy stable motion LH instead of
Wiener Brownian motion B1/2.

7.3 Multifractal Properties of Self-similar Processes

Deterministic Envelopes

For an H-sssi process V (t) we find, due to V (0) = 0,

2−nα
(n)
k = |V ((k + 1)2−n)− V (k2−n)|

d
= |V (2−n)|

d
= 2−nH |V (1)| = 2−nH2−α

(0)
0 . (7.6)

More generally:

Lemma 7.4. For an H-sssi process, the singularity exponents α
(n)
k , h

(n)
k , and w

(n)
k obey

the scaling law

s
(n)
k

d
= H + (1/n)s

(0)
0 (s ∈ {α, h, w}). (7.7)

Furthermore, IEΩ[2
−qs

(0)
0 ] is finite exactly for q < q < q, where for α

(n)
k and w

(n)
k

(q, q) =

{

(−1,∞) for fBm,
(−1, γ) for SγS motion,

(7.8)

and for h
(n)
k

q = ∞ for fBm,
q ≤ γ for SγS motion,
q = −∞ for Lévy stable and Wiener motion.

(7.9)

Proof
Property (7.7) follows for α

(n)
k from (7.6), and similarly for h

(n)
k using continuity of

paths. For w
(n)
k see [24]. Property (7.8) is well-known (compare (7.5)) since 2−nα

(n)
k and

2−nw
(n)
k are the moduli of Gaussian, resp. stable variables [24].

Next, let us discuss q for h
(n)
k . For SγS-stable motion the obvious estimate 2−nα

(n)
k ≤

2−nh
(n)
k implies immediately that q ≤ γ. For fBm we note that [59, lem. 12.2.1] actually
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shows that the tail probability P [supt∈[0,1] |BH(t)| > x] is smaller than 4 exp(−cx2),
which implies q =∞.

Finally, still for h
(n)
k , q = −∞ can be derived at least for Lévy stable motion LH

and Wiener motion B1/2 = L2 using stationarity and independence of increments as
follows:

P [ sup
0≤t≤1

|LH(t)| ≤ ε] ≤ P [|LH(k+1m )− LH( km)| ≤ 2ε for k = 0, . . . ,m− 1]

= P [|LH(1/m)| ≤ 2ε]m ≤ (cmH · ε)m

for some constant c and all m (for the Gaussian case see also [48]). This is sufficient
to show that all moments of negative order exist. We believe that q = −∞ also for
fBm. ♦

Using (7.7) one finds immediately

IEΩ
[

S(n)(q, ω)
]

= IEΩ

2n−1
∑

k=0

2−nqs
(n)
k = 2n2−nHqIEΩ

[

2−qs
(0)
0

]

,

and, with (7.8) and (7.9)

Ts(q) := lim
n→∞

log2 IEΩS
(n)(q)

−n
=

{

qH − 1 for q < q < q
−∞ else.

(7.10)

For the computation of F (a) let us denote the density function¶ of the distribution

of 2−s
(0)
0 by Φs. The H-sssi property (see lemma 7.4) and the mean value theorem yield

PΩ[|s
(n)
k − a| < ε] = PΩ[n(a−H − ε) < s

(0)
0 < n(a−H + ε)]

=

∫ 2−n(a−H−ε)

2−n(a−H+ε)

Φs(x)dx

= 2−n(a−H−ε)(1− 2−2nε)Φs

(

2−n(xa,n−H)
)

(7.11)

where xa,n ∈ [a− ε, a+ ε]. It is instructive to compare this to the rescaling property of
the marginals of the log-normal binomial cascade (5.32).

Applying lemma 7.4 Φs(x) behaves as x−q−1 at zero, resp. as x−q−1 at ∞. From
this the asymptotic behavior of (7.11) follows immediately provided we know whether
xa,n−H is eventually positive or negative. This observation resolves the cases a−ε > H
and a + ε < H. To cover the case a = H let us note that trivially P [2−nε < |V (1)| <
2nε]→ 1. In summary,

1

n
log2 PΩ[|s

(n)
k − a| < ε] =







(a−H)q + o(ε, n) if a > H + ε
o(ε, n) if a = H
(a−H)q + o(ε, n) if a < H − ε.

(7.12)

¶Recall that 2−α
(0)
0 = |V (1)|, 2−h

(0)
0 = sup[−1,2] |V (t)| etc.
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where o(ε, n) ≤ (1/n) log2(1−2−2nε)+c ·ε for sufficiently large n. In the case a < H−ε,
e.g., we may choose c = 2q + 4. From this, a formula for F (a) follows immediately.
Moreover, (7.12) implies also F (a) = F (a) since lim supn→∞ and lim infn→∞ may differ
at the most by cε. Infinite values for the partition function and the straight parts of
the resulting Legendre transform where mentioned in [66, 77].

Corollary 7.5. For an H-sssi process the deterministic partition function obtained
from the coarse singularity exponents α

(n)
k , h

(n)
k or w

(n)
k is given by (see Figure 8)

T ∗s (a) =







1 + q(a−H) for a < H
1 for a = H,
1 + q(a−H) for a > H.

(7.13)

Thereby, q and q are provided in lemma 7.4. Moreover, F (a) = F (a) (compare (3.24))
and

Fα = Fw = T ∗α = T ∗w , Fh = T ∗h . (7.14)

dim(E
[a]
h ) T ∗h (a) T ∗α(a) = T ∗w(a)

Lévy-stable

1

H

slope=1/H q 1/H1

H

1

H

slope=1/H slope=-1

fBm

1

H

1

H

q
1

H

slope=-1

FIGURE 8. The theoretical spectra of some self-similar processes. Top row: 1/H-stable Lévy
motion (H-sssi) bottom row: fractional Brownian motion BH (H-sssi)

Dimension based Spectra

For fBm a result by Adler [5] (compare theorem 7.3) states that with probability one
h(t) = H for all t. So, for a ≤ H we have almost sure equality of the spectra:

fBm: dim(E
[a]
h ) = fh(a) = τ ∗h(a) = T ∗h (a) =

{

1 a = H,
−∞ a < H.

(7.15)

In this light, it is appropriate to call fBm mono-fractal. For the interested reader we
mention that it is possible to find multifractal structure in the occupation measure of
Brownian and stable motion, however not in terms of pointwise exponents but pointwise
densities (see [25] and references therein).
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For Lévy stable motion LH (H-sssi, γ = 1/H-stable process, γ < 2) Jaffard citeJ5
computed the dimension spectrum (compare Figure 8 and (7.17)):

Lévy motion: dim(E
[a]
h ) =

{

a/H 0 < a < H,
−∞ else.

(7.16)

Grain based Spectra

Wiener Brownian motion B1/2 as well as Lévy stable motion (H = 1/γ) have indepen-
dent increments. Thus, corollary 7.5, theorem 3.14 and corollary 4.1 combine to yield
almost surely

Lévy motion: f
s
(a) = fs(a) = Fs(a) = τ ∗s (a) = T ∗s (a) (7.17)

for all a for which T ∗(a) ≥ 0 or = −∞. This is valid for the singularity exponents α
(n)
k ,

h
(n)
k as well as for w

(n)
k for compactly supported wavelets; (7.13) provides a formula of

T ∗. Counting on the strong decorrelation of wavelet coefficients of fBm [35, 57] and
keeping in mind remark 3.15 one may hope to find the same result true for fBm with
H 6= 1/2. Numerical evidence supporting this point is found in [41].

Partition Function

Due to the linearity of T (q) we are able to compute τ(q) for anyH-sssi process assuming
only that T (q) is finite for some negative and some positive q. We note first that for
each n, S(n)(0, ω) counts the number of non-vanishing increments which is 2n almost
surely. Thus, τ(0) = −1 almost surely. Similarly, T (0) = −1 always. Now observe that
τ(q) must be concave, yet lie ‘above’ T (q) due to lemma 3.9. This is only possible if
τ(q) is linear as well. In conclusion, if q < 0 < q, then with probability one:

H-sssi: τ(q, ω) = qH − 1 for all q < q < q. (7.18)

Almost sure bounds can be derived for other q values using that τ(q) is concave and
that τ ∗(a) is positive (compare [62]).

Failure of the multifractal formalism?

A stark discrepancy in the decreasing part between the local spectrum based on Hölder
exponents dim(E

[a]
h ) (often considered the ‘true spectrum’) and the deterministic en-

velope T ∗α,w based on increment or wavelet exponents α
(n)
k or w

(n)
k , respectively, is im-

mediately apparent from Figure 8. One could call this a failure of T ∗α,w to spot the true

Hölder continuity. Technically speaking, the reason for this feature is the fact α
(n)
k and

w
(n)
k are centered (zero-mean) random variables of ω, actually Gaussian, resp. stable

variables with considerable probability around zero.
Keeping in mind (7.17) and (7.18), however, one has to acknowledge that T ∗α,w nev-

ertheless contain crucial scaling information which is relevant in real world application.
The part of these spectra forming the line of slope −1 represent the considerably high
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chance to observe large α
(n)
k and w

(n)
k at resolution 2−n, i.e., increments and wavelet

coefficients of magnitude smaller than 2−nH .
In order to obtain information on the true Hölder continuity from wavelet exponents

w
(n)
k one has to employ the lines of maxima (see [78, 79, 7, 23]). Taking local maxima of

the modulus of wavelet coefficients one avoids exceptionally small w
(n)
k ; the correspond-

ing partition function comes then closer to τh since less mass in concentrated around
zero, allowing for more moments of negative order to be finite. The interested reader
might want to compare this remedy with the use of λ

(n)
k which avoids exceptionally

small increments for measures on fractal support (5.36).
In conclusion, one should keep in mind this artifact of multifractal analysis based on

data such as increments which is of zero mean. Though some information on the local
singularity structure of the process might be hidden to such an analysis, the resulting
T ∗ nevertheless corresponds to true scaling behavior of the process in the sense of (7.17)
which might be relevant. In this context, it becomes essential to detect divergence of
moments from finite data, an issue which is under investigation at present [39].

7.4 Long-Range Dependence (LRD)

The rigid correlation structure of fGn (7.3) is somewhat restrictive for modelling pur-
poses. However, the fact that its auto-correlation decays very slowly has been found
to be an important feature in itself and has inspired weaker notions of “similarity on
all scales” in terms of second-order statistics only. The novice reader should avoid a
common confusion with these weaker notions and be aware that they are defined in
terms of the increment processes on varying lags rather than in terms of the process Y
itself.

Second Order Scaling

It is easy to see that (7.3) decays like rU(k) ' k2H−2. For 1/2 < H < 1, the correlation is
strictly positive and decays so slowly that it is not sumable over k. A process X – which
we think of as being the increment process of Y – with this property (

∑

k rX(k) =∞)
is said to exhibit long range dependence (LRD), since it exhibits strong correlations
at large lags. LRD can be equivalently characterized in terms of the behavior of the
aggregated processes

X(m)(k) :=
1

m

(k+1)m−1
∑

i=km

X(i). (7.19)

As [19] shows, rX(k) ' k2H−2 is equivalent to var(X(k)) ≈ m2−2Hvar(X(m)[n]). So,
we are lead to define:

Definition 7.6. We say that X is asymptotically second order self-similar with pa-
rameter Hvar if the following limit exists:

Hvar := 1 +
1

2
lim
m→∞

log [var(X (m))/var(X(1))]

logm
(7.20)
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As an example let us mention the increments of an H-sssi process V (of finite vari-
ance): setting X(k) = U(k) = V (k + 1) − V (k) one finds Hvar,X = H due to (7.1) or
(7.6) (compare (1.17)).

Alternatively, LRD can be measured through spectral properties, since rX(k) '
k2H−2 is equivalent to a power-law behavior of its Fourier transform, the power spec-
trum, i.e., ΓX(ν) = F(rX)(ν) ' ν−(2H−1). The spectral estimation using the wavelet
transform of X developed in [4] translates this into

var(CX
j,k) ∝ 2−j(2H−1). (7.21)

One may adopt the following terminology:

Definition 7.7. X is asymptotically wavelet self-similar with parameter Hwave if the
following limit exists:

Hwave :=
1

2
−

1

2
lim
j→∞

1

j
log2 var(Cj,k). (7.22)

Also, Hwave can be considered an estimator of H for H-sssi processes. Similar as
before, Hwave = H for fGn [35, 57]. It should be noted here that the wavelet coeffi-
cients of fGn are typically much less correlated than those of the underlying sampled
fBm process. Thus, wavelet-based estimators for H compare favorably with standard
estimation techniques [4] and is particularly superior to Hvar [99].

Multifractal Envelope and LRD

The multifractal scaling exponent T (2) of a process Y is closely related to the LRD
parameter H, since both measure the power-law behavior of second-order statistics.
More precisely, T (2) captures the scaling behavior of the second sample moments,
while H captures the decay of the covariances.

From Section 1.5 we recall:

Lemma 7.8. For a process Y with zero-mean increments

Hvar =
Tα,Y (2) + 1

2
. (7.23)

For fBm, this is in agreement with (7.13).
Multifractal processes defined through multiplication on a tree such as the bino-

mial X(k) = µb(I
(n)
k ) are not second-order stationary. Hence, LRD cannot be defined

through the decay of the auto-covariances. However, alternative fractal properties, such
as the decay of aggregate variances (7.20) or wavelet coefficients (7.22) — which are
equivalent to LRD in the presence of second-order stationarity — can still be defined
and calculated.

As a further difficulty, processes obtained from cascades have positive increments
X(k), so that the argument (1.18) of Section 1.5 using the variances has to be corrected
to read

2−2i 2(i−n)(1+T (2)) ' IE
[

|X(m)|2
]

= var(X(m)) + IE
[

X(m)
]2
' var(X)2i(2H−2) + IE[X]2,
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noting that IE
[

X(m)
]

is independent of the scale m. Since 2H − 2 < 0 we may, thus,
still expect the same relation (7.23), at least in the limit of very fine resolution (small
m and i).

The variance-time plot method (7.20) is known to be an unreliable (but simple) esti-
mator of LRD behavior [99], while the wavelet method (7.22) is more robust. Recalling
that Tw,X(2) is defined in terms of wavelet energy, i.e., the variance of the wavelet co-
efficients of X, we find by stationarity var(Cj,k) = 2−j IE[2j|Cj,k|

2] ' 2−j 2−j(1+T (2)) =
2−j(2+T (2)), i.e.,

Hwave =
Tw,X(2) + 3

2
. (7.24)

Example 7.1. (LRD parameter of Binomial Cascades) Together with (6.3) we
find, e.g., for the binomial Y =Mb:

Hwave,Mb
=
Tw,µb(2) + 3

2
=
TMb

(2) + 1

2
= Hvar,Mb

. (7.25)

♠

This formula has interesting similarities with (6.2).

Example 7.2. (When scaling is only asymptotic) The examples presented so far
in this section are processes with ‘perfect’ or ‘omni-scaling’ such as fBm and cascades,
meaning that the scaling parameters H and T (q) can be obtained from comparing
statistics of any two scales. In real world applications one often requires more flexibility
and matches the LRD, resp. multifractal parameters only in the limit of large, resp.
small scales. Potentially, the two matching procedures can be performed independent
of each other.

Linear processes such as FARIMA (or ARFIMA) [100] allow, e.g., to match short
term correlations in addition to LRD. As a first step towards decoupling LRD and
multifractal scaling we mention here cascades with scale dependent multipliers. Such
processes were used in [89] to model internet traffic. In doing so we also demonstrate
how misleading time-domain estimators such as (T (2) + 1)/2 can be when only few
scales of resolutions are available and a large mean ‘masks’ the fine scale variability.
Let us add that ‘fBm in multifractal time’ which we introduce in the remaining section
provides an attractive alternative to model LRD separately from fine scale properties.

Consider a binomial cascade supported on [0, 1] with (i) and (ii), but where instead

of (iii) the distributions of M
(n)
k depend on the scale n as follows:

var(M
(n)
k ) =

22−2Hvar(M
(n−1)
k )

4var(M
(n−1)
k ) + 1

. (7.26)

This is arranged such that the Haar wavelet coefficients scale exactly as in (7.21). This
powerlaw can be easily derived using (5.13) (see below for a rough argument or see
[89]). In short, it is fair to say that this process has a scaling of the LRD type with
exponent H.
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To fully determine the distributions assume that M
(n−1)
k follows a symmetrical β-

distribution on [0, 1] (compare Example 5.1 or [89]). To start the iteration, we assume

a value of IE[(M
(1)
k )2] ' 1/4 (but different from 1/4) or var(M

(1)
k ) ' 0. This reflects

typical findings with high resolution network traces where there is often little variation
in the data on high aggregation levels in the order of several minutes.

Iterating (7.26) we find for the first few n that IE[(M
(n)
k )2] ' 1/4 and var(M

(n)
k ) '

σ2(22−2H)n, which is small for small n. Only for very fine scales (large n) will IE[(M
(n)
k )2] =

var(M
(1)
k )+ 1/4 converge to the limiting 2−2H . All this will affect the estimation of the

LRD parameter through (T (2) + 1)/2 from limited data as we explain now.

Motivated by (5.24) we use −(1/n) log2(2
n
∏n

i=1 IE[(M
(i)
k )2]) as an estimator for T (2).

If measurements are available only for small n this will result in T (2) ' −(1/n) log2(2
n4−n) =

1 since convergence is slow, and (T (2) + 1)/2 ' 1. Only in the limit n → ∞ will
one see T (2) ' −(1/n) log2(2

n2−2Hn) = 2H − 1 and discover the ‘correct’ value
(T (2) + 1)/2 ' H.

This is in stark contrast to the ability of the wavelet based estimator Hwave to pick up
H even from observing only few scales (recall that (7.21) holds exactly). Indeed, we ar-
gue that (7.21) should hold even when n is still small (compare [89] for a rigorous proof

of the exact powerlaw). According to (5.13) and using M
(n+1)
2kn

−M (n+1)
2kn+1

= 2M
(n+1)
2kn

− 1
we may translate the above approximations into

IE[C2n,k] = 2nIE[(M
(1)
k )2] · · · IE[(M (n)

k )2] · 4var(M (n+1)
k ) ' 2n4−n4(22−2H)n = 4(21−2H)n

(7.27)
as claimed. Consequently, the wavelet energy reveals Hwave = H even for small scales.

We see the reason for this phenomenon in the fact that T (2) is based on non-centered
2nd moments: for this estimator of LRD the scaling behavior is at coarser scales hidden
behind the mean of the process. In further support of this conclusion we mention that
also Hvar ' H even when estimated from few resolutions (n small): indeed, the ‘first

order’ approximation IE[(M
(i)
k )2] ' 1/4 (i = 1, . . . , n−1), IE[(M

(n)
k )2] = 1/4+var(M

(n)
k )

results in var(X (2−n)) = IE[(M
(1)
k )2] · · · IE[(M (n)

k )2] − (1/2n)2 ' 1/4n−1var(M
(n)
k ) '

σ2/4 · 2−2Hn, which is the claimed scaling.

As a final remark we add that with the ‘initial condition’ IE[(M
(1)
k )2] = 2−2H scaling

is perfect and (7.25) holds again. ♠

8 Multifractal Time Change

So far, we have given examples of processes which are either statistically self-similar
and ‘mono-fractal’ or multiplicative and almost surely increasing‖ and multifractal. It
is clear that there is need to marry the two in order to have processes with richer
structure. To quote Mandelbrot the idea towards this goal is ”simple but inevitable

‖Our multipliers are positive. Vector-valued multipliers can be treated but lead to technical
difficulties [31].
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after the fact”: multifractal time change.
Indeed, ‘Brownian motion in multifractal time’ appeals through the simplicity in

which it combines attractive features such as Gaussianity, LRD and multifractal struc-
ture. Arguing that trading occurs in ‘multifractal time’, [68, 69] introduced this process
as a model for stock exchange. Here, we are exploring all its multifractal spectra, as
well as more general ‘multifractal subordinations’. Since most of our analysis can be
done pathwise, let us start with a deterministic example. Recall, that we denote the
spectra of a process Y computed with singularity exponents s

(n)
k by fs,Y etc. when

confusion is possible.

8.1 Weierstrass Function in Multifractal Time

The Weierstrass function

W (t) :=
∑

λ−kH sin(λkt) (8.1)

has originally been introduced as an example of a nowhere differentiable function. In its
randomized version it was proposed by Mandelbrot as an efficient and simple model of
fBm. Similarly to fBm,W (t) is a mono-fractal, more precisely, its local Hölder exponent
hW (t) is everywhere equal to H. More pointedly, there are c and c′ such that

|W (t+ δ)−W (t)| ≤ cδH |W (t+ ε)−W (t)| ≥ c′εH (8.2)

for all t, all δ and some ε < δ.
In order to leave uniform Hölder continuity behind and moving towards multifractal

scaling we proceed as follows:

Definition 8.1. LetM(t) = µ([0, t]) be a multifractal distribution function. Then, the
Weierstrass function in multifractal time W(MF) is given by

W(t) := W (M(t)) (8.3)

We claim that W(MF) has a significant multifractal structure. Indeed, assuming that
M is continuous in a neighborhood of t we find a δ0(t) > 0 such that for δ < δ0(t)

sup
[t−δ,t+δ]

|W(s′)−W(s)| =

sup{ |W (u′)−W (u)| : inf
[t−δ,t+δ]

M(s) ≤ u < u′ ≤ sup
[t−δ,t+δ]

M(s) }

≤ c sup
[t−δ,t+δ]

|M(s′)−M(s)|H (8.4)

and the reverse inequality with c′. From this, it follows immediately that for all ε > 0
and n > n0(ε, t)

|h(n)kn (W)−H · h(n)kn (M)| < ε. (8.5)

This yields
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Lemma 8.2 (Warp formula for Weierstrass). Assume that M is piecewise con-
tinuous on [0, 1] with at most a finite number of discontinuities. Then, in points of
continuity of M

hW(t) = H · hM(t) (8.6)

and

dim(E
[a]
h,W) = dim(E

[a/H]
h,M ). (8.7)

Moreover, if M is continuous, then it is actually uniformly continuous on [0, 1] and
it is easy to see that δ0 and n0 of (8.4) are independent of t. Thus, we may relate the
grain based spectra of W and M using (8.5), i.e., fW(a) = fM(a/H). Their partition
functions are connected by a similar formula as we are about to develop. Referring
back to (8.4) we find, e.g., for positive q, and n ≥ n0

S
(n)
h,W(q) =

2n−1
∑

k=0

2−qnh
(n)
k
(W) ≤ cqH

2n−1
∑

k=0

2−qnH·h
(n)
k
(M) = cqHS

(n)
h,M(qH).

Similar estimates using the reverse of (8.4) show that S
(n)
h,W(q) and S

(n)
h,W(q) are equal

up to a factor which is bounded independently of n. So, if τM(qH) assumes a limit as
in (3.12), then so does τW(q). In summary

Lemma 8.3. Assume that M is continuous on [0, 1]. Then,

τh,W(q) = τh,M(qH) fh,W(a) = fh,M(a/H). (8.8)

These lemmas say nothing more than what was already apparent in (8.2): the Weier-
strass function stretches distances locally in a very uniform way in the form of a pow-
erlaw with exponent H. In W(MF) in particular, it stretches the multifractal time
increments, multiplying local Hölder exponents by H. As a consequence we have:

Theorem 8.4 (Multifractal formalism for Weierstrass). Let W be defined as in

(8.3) and assume thatM is continuous. Consider the singularity exponents h
(n)
k . Then,

for every a with

dim(E
[a/H]
M ) = τ ∗M(a/H)

equality holds in the multifractal formalism:

dim(E
[a]
W ) = fW(a) = τ ∗W(a) = τ ∗M(a/H). (8.9)

More delicate questions of multifractal analysis find again a simple answer provided
M is continuous. E.g., if E

[a/H]
M has positive finite γ-dimensional Hausdorff measure

then E
[a]
W has positive finite γ-dimensional Hausdorff measure where γ = dim(E

[a/H]
M ) =

dim(E
[a]
W ), etc. Similarly, it follows that W has a rich multifractal structure if M has

one. By this we mean that the sets E
[a]
W are dense on the unit interval. A smooth, strictly

concave partition function τW can be taken as an indicator of highly interwoven sets
E [a].
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The particular form of (8.9) and (8.8) allows to separate the Hölder continuity H of
the Weierstrass function from the multifractal spectrum of the ‘time change’ M, even
numerically. Indeed, the slope of the tangent of theW-spectra through the origin have
slope 1/H since τW(1/H) = τM(1) = 0. Alternatively, one may look for the zero of τW
in order to determine H. Once this is accomplished τM follows easily.

8.2 Self-similar processes in multifractal time

Following the example of the last section it is now easy to define processes with rich,
ubiquitous multifractal structure, yet attractive statistical properties such as zero mean
marginals and second order stationarity, simply by multifractal time change. In order
to be able to compute multifractal spectra, one needs some scaling properties of the
subordinated process, of course. To this end, let V denote a H-sssi process and M(t)
an almost surely increasing process from which we assume to know certain of its mul-
tifractal spectra. Then, set

V := V (M(t)). (8.10)

As always, the deterministic partition function T (q) is the most simple of the spectra
to calculate. Indeed, the computation for H-sssi processes carried out in the introduc-
tion (see (1.24)) can easily be generalized.

Theorem 8.5. Let V denote an H-sssi process and M an independent time change.
Let V := V (M(·)). Then, with q and q as defined in lemma 7.4,

TV(q) =

{

TM(qH) if q < q < q
−∞ else.

(8.11)

Here, the singularity exponents may be chosen to be α
(n)
k without further assumption.

For h
(n)
k the result holds provided M has almost surely continuous paths. Finally, in

the case of a binomial warp timeMb as in Section 5, (8.11) holds also for w
(n)
k for any

admissible, analyzing wavelet supported on [0, 1] under some technical condition.

Note that TV(q) may assume the value −∞ even for q < q < q depending on whether
TM(qH) is finite or not.
Proof
First, assuming continuous warp time M we may deal with suprema as in (8.4). This

takes care of the case h
(n)
k .

Let us now extend (1.24) to w
(n)
k . When conditioning onM we obtain by H-sssi and

(5.16)

V(t)− V(kn2
−n)
∣

∣

M

fd
=
(

M
(n)
kn
· · ·M (1)

k1
· M(n,kn)

b (2nt− kn)
)H

.
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The admissibility of the wavelet (
∫

ψ = 0) allows now to write

2n/2Cn,kn(V)
∣

∣

M
= 2n

∫

I
(n)
kn

ψ(2nt− kn)V(t)dt
∣

∣

M

= 2n
∫

I
(n)
kn

ψ(2nt− kn)
(

V(t)− V(kn2
−n)
)

dt
∣

∣

M

d
=

(

M
(n)
kn
· · ·M (1)

k1

)H

An,kn
(

MH
b

)

· V (1). (8.12)

Hereby, An,kn(M
H
b ) stands for the integral

∫ 1

0

ψ(t)(Mb(t))
Hdt = lim

n→∞

2n−1
∑

k=0

ψ(k2−n)(Mb(k2
−n))H · 2−n (8.13)

and is, actually, nothing but the wavelet coefficient C0,0 of (M
(n,kn)
b )H . SinceM(n,kn)

b

d
=Mb,

we have IEΩ[|An,kn |
q] = IEΩ[|C0,0(M

H
b )|

q] and the integral term will not affect the scal-
ing of moments, provided IEΩ[|C0,0(M

H
b )|

q] is finite. This is one part of our technical
assumption.

Similarly, IEΩ[|V (1)q] will not affect Tw,V as long as it is finite. This is taken into
account by restricting q to (q, q).

Comparing with the derivation (5.24) one finds now easily that Tw,V(q) = Tα,Mb
(qH).

Assuming now also that IEΩ[|C0,0(Mb)|
qH ] is finite, which is the second part of the

technical assumption, then Tα,Mb
(qH) = Tw,Mb

(qH) by (6.3). So, (8.11) is established.
♦

8.3 FBm in multifractal time

The most obvious example of a ‘warped motion’ is fractional Brownian motion in
multifractal time FB(MF), i.e., B = BH(M). It is first mentioned in [68, 69] which
pioneered it’s application to stock markets. FB(MF) has particularly nice properties.
It must be distinguished from the ‘multifractional Brownian motion’ of [85] which has
a ‘slowly varying’ h(t), non-ubiquitous singularities, a piecewise linear T ∗, and strict
inequality in the multifractal formalism [62], i.e., an excellent model for non-stationarity
rather than for multifractality.

Pathwise Spectra of warped fBm

For any process V which has strict and uniformly Hölder continuous paths such as
fBm, the pathwise spectra are as easy to compute as for the multifractal Weierstrass
function. Indeed, applying Adler’s result (see Theorem 7.3) for η = 1/m (m ∈ IIN)
instead of (8.2) we find that with probability one, for all m ∈ IIN there is a finite,
positive Am and n0(m) ∈ IIN such that

−
1

n
log2(Am)(H − 1/m)h

(n)
kn

(M) ≤ h
(n)
kn

(B) ≤
1

n
log2(Am)(H + 1/m)h

(n)
kn

(M). (8.14)
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for all t and all n > n1(m, t). As usual, h
(n)
kn

= kn(t) = bt2
nc as in definition 5.1. Here,

n1 has to be taken large enough such thatM is continuous in [(kn−1)2−n, (kn+2)2−n]
(compare (8.4)) and such that |M(s′)−M(s)| ≤ 2−n0 for all s, s′ ∈ [(kn− 1)2−n, (kn+
2)2−n]. To avoid complications we should assume here that time change M and fBm
BH are independent.

Assuming thatM has almost surely continuous paths this allows to conclude imme-
diately that with probability one,

hB(t) = H · hM(t)

for all t in a compact interval. WhenM is continuous, however, then n1 can be chosen
independently of t with probability one, and we may compare grain based spectra and
the partition functions in the same way as for the warped Weierstrass function W(MF).
So, lemma 8.3 and theorem 8.4 hold for warped fBm FB(MF) mutatis mutandis:

Theorem 8.6 (Warp formula for fBm). Let BH denote fBm, let M be an almost
surely continuous time change independent of BH and set B(t) := BH(M(t)). Then,
for almost every path (8.7) and (8.8) hold with W replaced by B. In particular, for
almost every path

dim(E
[a]
B ) = fB(a) = τ ∗B(a) = τ ∗M(a/H) (8.15)

for all a with

dim(E
[a/H]
M ) = τ ∗M(a/H),

where all these spectra are taken with respect to the Hölder exponents h
(n)
k .

Estimation through wavelets

While theorem 8.6 is an appealing theoretical result, it is quite unaccessible from a
numerical point of view because suprema of continuous time processes are hard to
estimate from a discrete sampling. It comes as a remedy that wavelets can be used for
estimation purposes as we are going to develop in a special case now.

Therefore let us assume that the warp time is a binomial cascade Mb satisfying
(i)-(iii) (see (5.5)). Let ψ be an admissible, analyzing wavelet, i.e.,

∫

ψ = 0, supported
on [0, 1]. Exploiting the uniform Hölder continuity of fBm (see (8.14) or Theorem 7.3)
and the strong scaling property of Mb (see (5.14)) we will lay open the multiplicative
structure of the wavelet coefficients Cn,kn(B) in a result analogous to lemma 5.4. This
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is, of course, much stronger than (8.12) which dealt only with distributions:

2n/2Cn,kn(B) = 2n
∫

I
(n)
kn

ψ(2nt− kn)B(t)dt

= 2n
∫

I
(n)
kn

ψ(2nt− kn)
(

V (Mb(t))− V (Mb(kn2
−n))

)

dt

≈ 2n
∫

I
(n)
kn

ψ(2nt− kn)
(

Mb(t)−Mb(kn2
−n)
)H±η

dt

=
(

M
(n)
kn
· · ·M (1)

k1

)H±η
∫ 1

0

ψ(t′)
(

M(n,kn)
b (t′)

)H±η

dt′

=
(

2n/2Cn,kn(Mb)
)H±η

An,kn

(

MH±η
b

)

(An,kn(Mb))
H±η

.

Hereby, we used ≈ to indicate equality up to a bounded error, i.e., A and K in the
notation of theorem 7.3. Also, An,kn(M

H′

b ) is as in (8.13) and we assume it to be
uniformly bounded away from zero for H ′ = 1 as well as all H ′ close to H. Taking log2
and dividing by −n we find the analogue to (8.14), i.e.,

w
(n)
kn

(B) ≈ H · w(n)kn
(Mb)

up to an error which will become uniformly small as n increases. In short, wB(t) =
H · wMb

(t), fw,B(a) = fw,Mb
(a/H) etc. Since for a binomial the wavelet based spectra

coincide with the ones based on α
(n)
k and h

(n)
k almost surely we can summarize as

follows:

Theorem 8.7 (Wavelet analysis of warped fBm). Let Mb be a binomial time
change satisfying (i)-(iii) (see (5.5)), independent of BH . Consider an admissible,
compactly supported analyzing wavelet. Assume that An,k(M

H′

b ) are uniformly bounded
away from zero for H ′ = 1 and H ′ close to H. Then, for almost all paths

dim(E
[a]
w,B) = dim(E

[a]
h,B) = fw,B(a) = fh,B(a) = τ ∗w,B(a) = τ ∗h,B(a) = T ∗Mb

(a/H) (8.16)

for all a with T ∗Mb
(a) > 0.

This is impressively demonstrated in Figure 3. For the statistics of the estimator for
τ ∗w,B(a) used in there see [40].

We would like to point out that this result is not so much due to the dyadic structure
of both the binomial warp timeMb as well as the wavelet coefficients Cn,k, but rather
the strong rescaling properties of Mb and fBm. Using sophisticated tools which are
now standard in multifractal analysis it is very well possible to extend this result to
arbitrary multi-nomial warp time as introduced in Section 5.6.

LRD-parameter for warped fBm

An immediate consequence of (8.11) is a formula for the ‘LRD’ parameter of FB(MF).
We could employ (7.20) or (7.22). However, we choose to calculate correlations exactly.
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In order to do so, we develop (B(t) − B(s))2 and take expectations as in (7.2). First
note that

IE[B(t)2] = IEIE[BH(M(t))2|M(t)] = IE[M(t)2H ] · IE[BH(1)
2].

Writing σ2 = IE[BH(1)
2] for short we obtain

IE[B(t)B(s)] =
σ2

2

(

IE[M(t)2H ] + IE[M(s)2H ]− IE[|M(t)−M(s)|2H ]
)

. (8.17)

Let us consider now the increment process for a fixed lag size δ < 1, i.e., fractional
Gaussian noise in multifractal time FG(MF):

G(s) := B(s+ δ)− B(s) = BH(M(s+ δ))−BH(M(s)). (8.18)

Writing ∆b
a =M(b)−M(a) for short we find from (8.17)

IE [G(s) · G(t) ] =
σ2

2
IE
[

|∆s+δ
t |2H − |∆s+δ

t+δ |
2H − |∆s

t |
2H + |∆s

t+δ|
2H
]

. (8.19)

Lemma 8.8 (LRD of warped fBm). Assume that for each k the moment of order
2H of the increments M(kδ) −M(mδ) depends only on |k −m| and is finite. Then,
the discrete time FG(MF) is second order stationary with auto-correlation function

rG(k) = IEΩ[G(n+ k)G(n)]

=
σ2

2
IEΩ
[

M((k + 1)δ)2H − 2M(kδ)2H +M((k − 1)δ)2H
]

(8.20)

The assumptions apply certainly if M is a Lévy subordinator, i.e., an H ′-sssi 1/H ′-
stable process, provided 2H < 1/H ′. Strictly speaking, a subordinator should be a.s.
increasing which is the case for Lévy motion provided H ′ > 1. Note that we do not
require monotonicity of M. A binomial ‘subordinator’ satisfy the assumptions of the
lemma with H = 1/2 since IEΩ[Mb(t)] = t. Finally, we note that multiplicative multi-
fractal processes with stationary increments have been introduced recently [70, 74, 105].

The formula (8.20) extends the usual auto-correlation function of fGn. Indeed, when
choosingM(t) = t it reduces to (7.3), as it should. In general, considering (8.20), (7.20)
and (7.22), it is probably fair to call

HG =
Tα,M(2H) + 1

2
(8.21)

the LRD parameter of fractional Gaussian noise in multifractal time.
Consider the special case H = 1/2 andM increasing with IEΩ[M(t)] = t. Then, G is

simply ‘white (i.i.d.) Gaussian noise in multifractal time’. Its (2nd order) correlations
vanish due to (8.20). This agrees with HG = 1/2 which holds due to TM(1) = 0.
Nevertheless, the process G is highly dependent which is revealed by the higher order
moments, i.e., by TB(q) for q 6= 2. Mandelbrot calls this the ‘blind spot’ of spectral
analysis.
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Simulation

For simulations of fBm in multifractal time FB(MF) it is advisable to use a randomized
Weierstrass function

W(t) :=
∞
∑

k=1

Ckλ
kH sin(λkM(t) + Ak).

Since |M(t)−M(s)| is for most s and tmuch smaller than |t−s| (actually' |t−s|α(t),
with most α(t) ≥ α0 > 1) any other procedure would require high precision simulation
of fBm and might be numerically demanding. With Ck i.i.d. N (0, 1) and Ak i.i.d.
U [0, 2π), W has zero mean increments with variance (compare [32, p 248])

IE[(W(t+ δ)−W(t))2|M] = 2
∞
∑

k=1

λ2kH sin2(λk(M(t+ δ)−M(t)))

' c(M(t+ δ)−M(t))2H .

This gives hope that at least the correlation decay is matched.
Another simple case for simulation is Wiener motion in multifractal time WM(MF)

because WM, i.e., B1/2, has independent increments (compare Figure 3 (a)-(c)).

8.4 Pathwise spectra for warped H-sssi processes

In this section we provide two types of formulas for the pathwise spectra similar as be-
fore: the ‘multifractal formalism’ relates various spectra of subordinated processes with
each other, while the ‘warp formulas’ relates them to the spectra of the subordinator.

A first step towards this goal is to compute the deterministic grained spectrum F (a).
This is somewhat more involved than dealing with T (q), though we may follow the
computation carried out for simple H-sssi processes (compare (7.11)) with only little
modification. The effort is worthwhile since we will gain information on the pathwise
spectra f(a).

The strong monofractal behavior of fBm relates the spectra of the time change M
and the ‘warped’ process V in an almost trivial manner (see theorem 8.6) and provides
us with a simple intuition: scaling exponents multiply under subordination. Since the
exponent of fBm is constant, i.e., h(t) = H for all t, it is easy to control the warped
spectra. Allowing general H-sssi processes, however, brings about the problem that
many different combinations of singularity exponents of M and V may multiply to
yield the same exponent for V = V (M(·)). This will generally result in ‘smoother’
spectra.

Formulas and discussion

From the previous discussion we may expect that the spectra of the warped process
V and the subordinator M are related through simple transforms which account for
the aforementioned ‘smoothing’. We first introduce and discuss these transforms on
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the spectra and establish then conditions under which they equal the spectra of the
warped process. For simplicity we stick in this section with the case of subordinating
self-similar processes, leaving the general processes for Section 8.5 when the necessary
formulas appear naturally.

Definition 8.9. The H-warped partition functions of M are defined as

(H-sssi:) T
‖
M(q) :=

{

TM(qH) for q < q < q,
−∞ else,

(8.22)

and similarly for τ
‖
M(q). Note that T

‖
M(q) may be −∞ even for q < q < q.

With the symbol ‖ we try to indicate the truncation of the functions. In this notation,
(8.11) becomes simply TV(q) = T

‖
M(q), expressing that the operation (·)‖ gives the

correct passage from TM to TV .
Taking the Legendre transform of τ

‖
M, e.g., we find

(τ
‖
M)∗(a) = inf

q

(

qa− τ
‖
M(q)

)

= inf
q<q<q

(qa− τM(qH)) = inf
Hq<q′<Hq

(

q′
a

H
− τM(q′)

)

.

(8.23)

From the last of these expressions we learn that (τ
‖
M)∗(a) = τ ∗M(a/H) whenever q =

−∞ and q = ∞. This is the case for Wiener motion B1/2 when choosing the Hölder

exponents h
(n)
k . So, theorem 8.6 tells us that (τ

‖
M)∗(a) could indeed be a good guess

at fV for general warped H-sssi processes, but obviously only where fV is concave.
This leads us to the following definition, still in the context of subordinated self-similar
processes (for general processes see definition 8.14):

Definition 8.10. Assume that fM, respectively FM, are concave. Then, the H-warped
spectra of M are given by

(H-sssi, concave): f4M(a) := (τ
‖
M)∗(a), F4M(a) := (T

‖
M)∗(a).

(8.24)

With the symbol 4 we try to indicate the transformed shape of the functions (com-
pare Figure 9 (b)) as summarized in the following:

Lemma 8.11. Assume that fM, respectively FM, are concave. Let f4 and F4 be given
by (8.24).
(a) Shape: For a = Hτ ′M(qH) with q < q < q

f4M(a) = fM(a/H) and (f4M)′(a) = q. (8.25)

For smaller, resp. larger a the function f4M(a) is linear with slopes q and q, resp.
(b) Warping of the Multifractal formalism: If τM(qH) = TM(qH) for all q < q < q,
then for all a

f4M(a) =
(

τ
‖
M

)∗

(a) =
(

T
‖
M

)∗

(a) = F4M(a) (8.26)
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Warping convolution Warped spectrum1 1

FIGURE 9. Left: To ‘warp’ a concave function f with a piecewise linear function such as
the grain spectrum g = FV of a stable Lévy motion one considers the ‘morphed’ curves
gy,z(x) = z−x(g(y/x)−1), singling out the ones which touch f . Right: The resulting warped
function f4(H·) is the set of minima of those touching gy,z. (Compare 8.4.)

Proof
Claim (a) follows from (8.23). Claim (b) follows from (a) using corollaries 4.5 and 4.7.

♦

The following theorem establishes in what sense the warped spectra of the subordi-
nator M equal the spectra of the warped motion. The proof shows that the theorem
holds also for non-concave spectra, thereby extending f4 to the general case.

Theorem 8.12 (Self-similar processes in multifractal time). Let V be an H-sssi
process and M an arbitrary time change, independent of V . Denote V := V (M(·)).

Admit the singularity exponents α
(n)
k , h

(n)
k and w

(n)
k under the same conditions as in

theorem 8.5. Then, conditioned on knowing M∗∗

FV(a)
∣

∣

M
= f4M(a). (8.27)

Furthermore,
FV(a) = F4M(a). (8.28)

Finally, if fM = f
M

then FV
∣

∣

M
= F V

∣

∣

M
(compare (3.28) and (3.26)).

In the special case when V has independent increments theorem 3.14 allows to com-
pute the pathwise grain spectra as well:

Corollary 8.13 (Lévy stable motion in multifractal time). Let LH denote Lévy
stable motion and let M be an almost surely strictly increasing time change, indepen-
dent of LH . Set V := LH(M(·)). Admit the singularity exponents α

(n)
k , h

(n)
k and w

(n)
k

under the same conditions as in theorem 8.5. Assume that fM = f
M

almost surely. Let

a be such that f4M(a) > 0 almost surely. Then, for almost all paths we have the warp
formula

fV(a, ω) = FV(a)
∣

∣

M
= f4M(a). (8.29)

Moreover, the multifractal formalism holds in the sense that

fV(a, ω)
a.s.
= τ ∗V(a, ω)

a.s.
= FV(a) = T ∗V(a) = (T

‖
M)∗(a) (8.30)

∗∗In abuse of notation we let FV(a)
∣

∣

M
= limε lim supn(1/n) log2 IE[N

(n)(a, ε)
∣

∣M].
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for any a for which
(

T
‖
M

)∗

(a)
a.s.
= f4

M
(a) > 0.

Let us discuss some examples and special cases.

Example 8.1. (Binomial subordinator) For a binomial time changeMb our results
are the strongest, since all spectra, i.e., all dimension and grain based spectra ofMb for
α
(n)
k , h

(n)
k as well as w

(n)
k , coincide and are strictly concave almost surely. In particular,

fMb
is concave, f

Mb
= fMb

and τ
‖
Mb

= T
‖
Mb

. Consequently,
(

T
‖
Mb

)∗

(a)
a.s.
= f4

Mb
(a) and

(8.30) of corollary 8.13 applies to the entire positive part of
(

T
‖
Mb

)∗

(a). ♠

Example 8.2. (Lévy subordinator) Let us assume that the warp time is Lévy
stable motion with Hurst parameter H ′ while the subordinated process is Lévy stable
motion with Hurst parameter H, i.e., V = LH(LH′). Then, f

LH′
= fLH′ = τ ∗LH′

= T ∗LH′

by (7.17) and we may apply corollary 8.13. According to (7.13) these spectra are
piecewise linear.

To compute f4LH′
let us consider for simplicity the singularity exponent α

(n)
k . In this

case q = 1/H and q = −1. Using that τLH′ (qH) = qHH ′− 1 for −1/H < q < 1/(HH ′)
—again by (7.17) and (7.13)— it is straightforward to compute via (8.24) and (8.29)

fLH(LH′ )(a) = (τ
‖
LH′

)∗(a) =







1 + (a−H ·H ′)min( 1
H
, 1
H·H′ ) if a < H ·H ′

1 if a = H ·H ′

1− (a−H ·H ′)min(1, 1
H
) if a > H ·H ′.

(8.31)

We will revisit this example in the next section and comment on how to understand
this formula. ♠

Proof of theorem 8.12

As the reader will notice the only assumptions on V used in the proof are stationary
increments and FV = F V . We formulate the proof for α

(n)
k and h

(n)
k . Since only distri-

butions matter here, (8.12) is sufficient to deal with the case of wavelet coefficients.
Let us compute first the relevant probabilities conditioned on M. For the ease

of notation we assume that M is monotonous so that inf
I
(n)
k

M(t) = M(k2−n) and

sup
I
(n)
k

M(t) =M((k + 1)2−n). This simplifies the formulas considerably.

We start by looking at

pn(k, a
′) := PΩ[a− ε < s

(n)
k (V) < a+ ε

∣

∣M, a′ < s
(n)
k (M) < a′ + ε′] (8.32)

Conditioning on knowing M we actually know s
(n)
k (M) (and not only a′ < s

(n)
k (M) <

a′ + ε′). Due to stationarity of increments of V we have pn(k, a
′) = pn(0, a

′). For

s
(n)
k = α

(n)
k we find s

(n)
0 (V) = |V (M((k + 1)2−n) −M(k2−n) )| = |V (2−ns

(n)
k
(M))|. For

s
(n)
k = h

(n)
k , s

(n)
0 (V) becomes the supremum of increments of V over an interval of length

2−ns
(n)
k
(M) adding only notational but no logical difficulties. Having expressed s

(n)
k (V)

through s
(n)
k (M) we may now abbreviate s

(n)
k = s

(n)
k (M) to simplify formulas without
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creating confusion. A simple manipulation yields

pn(k, a
′) = pn(0, a

′) = (8.33)

PΩ

[

(

2−ns
(n)
k

)(a+ε)/s
(n)
k

< |V (2−ns
(n)
k )| <

(

2−ns
(n)
k

)(a−ε)/s
(n)
k
∣

∣

∣ a′ < s
(n)
k < a′ + ε′

]

.

Using that a′ < s
(n)
k (M) < a′ + ε′ the asymptotical behavior of pn(k, a

′) is then

lim sup
n→∞

1

n
log2 pn(k, a

′) = lim sup
n→∞

s
(n)
k

1

ns
(n)
k

log2 pn(k, a
′) = a′ · (FV (a/a

′)− 1) + o(ε, ε′).

(8.34)
Here, o(ε, ε′) is an error term which goes to zero as both, ε and ε′ go to zero. If FV = F V

the lim infn equals the same expression (8.34). We can not conclude, however, that the
limit exists because pn(k, a

′) depends also on ε and ε′. Nevertheless, we have then
sufficient control on the asymptotical behavior of pn(k, a

′) for all n.
Let us stop for a moment and redo this calculation in the special case of V being an

H-sssi process. We may proceed then similar as in (7.11) with the only difference that

V is now considered over an interval of length 2−ns
(n)
k
(M) in the case of s

(n)
k (V) = α

(n)
k (V)

(similarly for h
(n)
k (V)). Using stationarity of increments and self-similarity of V leads

to

pn(k, a
′) = PΩ[2

−n(a+ε) < |V (2−ns
(n)
k
(M))| < 2−n(a−ε)

∣

∣ s
(n)
k (M)]

= PΩ[n(a−H · s(n)k (M)− ε) < s
(0)
0 (V) < n(a−H · s(n)k (M) + ε)

∣

∣ s
(n)
k (M)].

Using the approximation s
(n)
k (M) ≈ a′ and proceeding as in (7.12) gives

lim sup
n→∞

1

n
log2 pn(k, a

′) =







(a−H · a′)q + o(ε, ε′) if H · a′ + ε < a,
o(ε, ε′) if a = H · a′,
(a−H · a′)q + o(ε, ε′) if H · a′ − ε > a.

A moment’s thought reveals that this is indeed a′ · (FV (a/a
′)− 1) + o(ε, ε′) as before.

Let us now continue the proof. Since the asymptotics of pn(k, a
′) does not depend

on k we may write pn(lε
′) = pn(k, lε

′) and group terms as follows

πn :=
2n−1
∑

k=0

PΩ[a− ε < s
(n)
k (V) < a+ ε

∣

∣M] =
∑

l

pn(lε
′) ·NM

n (lε′, ε′/2). (8.35)

This approach closely follows the techniques of the proof of theorem 4.2 and lemma 3.6.
First, one notices that for fixed ε and ε′ there are only finitely many indices l to consider.
Hence the asymptotic behavior of (8.35) is dominated by the asymptotically largest
term appearing in the sum.

The asymptotics of pn (8.34) combined with the definition of fM (1.8) yield

lim sup
n→∞

1

n
log2

[

pn(a
′) ·NM

n (a′, ε′/2)
]

= fM(a′) + a′ · (FV (a/a
′)− 1) + o(ε, ε′). (8.36)
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As in (3.16) and (4.4) one concludes that

lim sup
n→∞

1

n
log2 πn = sup

a′
(fM(a′) + a′ · (FV (a/a

′)− 1)) + o(ε, ε′).

For this computation one uses the general fact that lim inf(xn)+lim inf(yn) ≤ lim inf(xn+
yn) ≤ lim inf(xn)+lim sup(yn) ≤ lim sup(xn+yn) ≤ lim sup(xn)+lim sup(yn). Because
some of these inequalities may be strict, however, one needs to know that at least one
of fM = f

M
or FV = F V holds to obtain this limsup; and both equalities have to

hold if one likes to estimate the liminf. For H-sssi processes, FV = F V follows from
corollary 7.5. Letting ε and ε′ tend to 0 we get, finally,

FV(a)
∣

∣

M = sup
a′

(fM(a′) + a′ · (FV (a/a
′)− 1)) (8.37)

Formula (8.37) captures the multifractal interaction between warp time and warped
motion. It makes most explicit how the combination of singularity exponents of M
and V results in the spectrum of V = V (M). The RHS of (8.37) is the announced
definition of f4M in all generality (compare (8.24)). We will discuss its properties as
well as the fact why we consider it a transform of fM rather than of FV momentarily.

The proof of the first part of theorem 8.12 is complete now. For the second part, we
write by the law of total probability, by (3.22) and by rearranging terms,

2n−1
∑

k=0

PΩ[ |s
(n)
k (V)− a| < ε] =

2n−1
∑

k=0

∑

l

pn(lε
′) · PΩ[ |s

(n)
k (M)− lε′| < ε′/2]

=
∑

l

pn(lε
′) · IEΩ[N

M
n (lε′, ε′/2)]

Comparing with (8.35) and recalling (3.23) it is clear that the same analysis as above
applies, with fM replaced by FM. This proofs (8.28). ♦

Proof of corollary 8.13

To proof the corollary we apply theorem 3.14 conditioned on knowingM. Note that the
singularity exponents s

(n)
k = |LH(M((k + 1)2−n)) − LH(M(k2−n))| (k = 1, 2, . . .) be-

come independent when conditioned onM. Similarly for s
(n)
k = sup{|LH(u)−LH(u

′) :
M((k − 1)2−n) < u < u′ < M((k + 2)2−n)|, at least in the sense of remark 3.15.
Finally, (8.30) follows from the multifractal formalism corollary 4.1 applied to V and

from fV = f4M = T
‖
M = TV . ♦

General definition of f4

Motivated by formula (8.37) we extend definition 8.10:

Definition 8.14. The Y -warped spectra of M are given by

f4M(a) = sup
a′

(fM(a′) + a′ · (FY (a/a
′)− 1)) (8.38)
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and similar for F4M.

Let â mark a value for which FY attains its maximal value, which is always 1. Then,
(FY (a/a

′)− 1) = 0 at a′ = a/â which implies that

f4M(a) ≥ fM(
a

â
).

In order to get a more graspable idea of f4 consider the two-parameter family of
functions ga,z(a

′) := z − a′ · (FY (a/a
′)− 1). First, observe that each such function has

as minimum point in (a/â, z). Second, since fM(a′) ≤ 1 we have ga,z > fM for z > 1.
We are now ready to give an explanation of (8.38) as a ‘touching’ or ‘morphological’

transform (compare Figure 9):

f4M(a) = min{z : ga,z > fM}. (8.39)

In other words, z = f4M(a) is the critical value of z for which the curves ga,z and fM
touch.

Example 8.3. (Warped fBm) In the special case of Y = BH and choosing the

Hölder exponents h
(n)
k , the spectrum FY reduces to the point (â, 1) and we find as

earlier
f4M(a) = fM(a/â) (if q = −∞, q =∞.) (8.40)

♠

Example 8.4. (Warped H-sssi process) For an H-sssi process Y and general s
(n)
k

one has â = H and by (7.13)

ga,z(a
′) =

{

z − (a−H · a′)q for a′ ≤ a,
z − (a−H · a′)q for a′ > a.

(8.41)

Note that q < 0 < q. Thus, ga,z has indeed the shape of Figure 9 (a), with a unique
minimum in (a/H, z) and with slopes Hq and Hq to the left and right of this minimum,
respectively.

As we have seen in (8.39) one needs to draw the ‘touching’ ga,z and to follow their
minima. Keeping the simple form of ga,z in mind we may conclude as follows:

If a is such that the appropriate ga,z is touching fM with its minimum, then we have

f4M(a) = fM(a/H).
For all other a the appropriate ga,z is touching fM with one of its linear parts, the

small (large) a on the one of slope Hq (Hq). Using (8.39) and z = ga,z(a/H) it follows

that f4M(a) = z depends linearly on a, for small (large) a with slope q (q).

Intuitive recipe Since an H-warped f4M is continuous, computing it amounts to
finding ‘tangents’ to fM of slope Hq and Hq on the left and right, respectively. Fol-
lowing the graph of fM in its center part and the tangents at the outskirts on gets a
plot of f4M(H·).
Rigorous recipe One takes the Legendre transform of fM(·/H) (which is nothing

but τM(·H)), cuts off the slopes q outside the interval (q, q) and transforms back. Thus,
(8.38) is a true extension of (8.24). ♠
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Note that f4 is not always concave, though it may remove some of the non-concave
parts of f . For toy models of non-concave f which will lead to non-concave f4 see
[91, 94].

Finally, let us explain why (8.38) should be viewed as a transform of fM rather than
one of FY . First, the simplicity of (8.41) and (8.24) may be misleading. In general,
the smoothing ‘kernel’ a′ · (FY (a/a

′)− 1) will change its shape as a changes. A second
reason is found in (8.40). Third, FY is deterministic and fM is not.

Example 8.2. (Lévy subordinator, revisited) Let us apply formula (8.38) to the
situation introduced in Example 8.2 on page 76 and compute the positive part of
f4LH′

. Recall that q = 1/H and q = −1 for the singularity exponent α
(n)
k considered

there. According to (7.17) the graph of fLH′ (·/H) consists of two line segments joining
(HH ′, 1) with the origin and with (H(H ′ + 1), 0) (slopes 1/(HH ′) and −1/H).

At this point it is already clear that fV(HH
′) = f4LH′

(HH ′) = fLH′ (H
′) = 1 which

marks the peak of fV . This does not come as a surprise: the (Lebesgue) almost every-
where present Hölder exponents H and H ′ of motion and time change (see [54, Rem. 4])
combine into the (Lebesgue) almost everywhere present Hölder exponent HH ′ of the
compound process.

Let us assume H ′ > 1 in order to have an increasing warp time. Then, fV = f4LH′
=

fLH′ (·/H) in their left part, i.e., for a < HH ′. This is because their slope is there equal
to 1/(HH ′) which lies in the interval (q, q) = (−1, 1/H). Consequently, fV will pass
through the origin.

If H > 1, then fV = f4LH′
= fLH′ (·/H) also in the right part since the slope is there

−1/H which is within (q, q) = (−1, 1/H):

V = LH>1(LH′>1) : fV(a) =

{

1 + (a−H ·H ′)/(H ·H ′) if 0 ≤ a ≤ H ·H ′

1− (a−H ·H ′)/H if a > H ·H ′.

However, if H < 1 then the right part of f4LH′
will have slope −1, the smallest one

allowed:

V = LH<1(LH′>1) : fV(a) =

{

1 + (a−H ·H ′)/(H ·H ′) if 0 ≤ a ≤ H ·H ′

1− (a−H ·H ′) if a > H ·H ′.

With (8.38) we have now a better understanding of the difference of these two cases.
First, when H < 1 the subordinated process LH(LH′) is somewhat more regular than
a comparison with fBm would make one think, i.e., f4LH′

> fLH′ (·/H) for a > HH ′

(note that this agrees with (8.25)). For an explanation note that the ‘touching point’
of fLH′ with a

′(FLH (a/a
′)− 1) occurs at the peak of fLH′ meaning that the (Lebesgue)

almost everywhere present LH′-points with h(t) = H ′ > 1 control the entire right side
of the multifractal spectrum of V . The left part is governed by the (Lebesgue) almost
everywhere present LH-points with h(t) = H. Second, in the case H > 1 the entire
spectrum is controlled by the same (Lebesgue) almost everywhere present LH-points
with h(t) = H. ♠



8 Multifractal Time Change 81

8.5 Multifractals in Multifractal Time

In Section 8.4 we actually established theorem 8.12 not only for H-sssi processes V
but for general processes Y with stationary increments and some regular multifractal
scaling:

Theorem 8.15 (Multifractals in multifractal time). Let Y andM be independent
processes and set Y(t) = Y (M(t)). Assume that the distributions of Y (t + δ) − Y (t)

are independent of t. Admit the singularity exponents α
(n)
k , h

(n)
k and w

(n)
k under the

same conditions as in theorem 8.5. Assume that FY = F Y . Then, we have the warp
formula

FY(a)
∣

∣

M
= f4M(a) and FY(a) = F4M(a), (8.42)

and ††

TY(q)
∣

∣

M
= τM(TY (q) + 1) TY(q) = TM(TY (q) + 1). (8.43)

Moreover, if fM = f
M

then FY
∣

∣

M
= FY

∣

∣

M
.

Proof
To obtain TY we simply take the Legendre transform in (8.42) . Assuming a′ > 0 we
find

TY(q)
∣

∣

∣M = F ∗Y(q)
∣

∣

∣M = inf
a

(

qa− FY(a)
∣

∣

∣M

)

= inf
a

(

qa− f4M(a)
)

= inf
a

(

qa+ inf
a′

(−fM(a′)− a′(FY (a/a
′)− 1))

)

= inf
a′

(

−fM(a′) + a′
(

1 + inf
a

(

q
a

a′
− FY (

a

a′
)
)))

= inf
a′

(−fM(a′) + a′ (1 + TY (q)))

= f ∗M(1 + TY (q)) = τM(1 + TY (q)).

With similar manipulations one obtains TY . As a matter of fact, (8.43) can easily be
obtained directly using the technique of (8.33). ♦

Formula (8.43) shows how to extend definition 8.9:

Definition 8.16. The Y -warped partition functions of M are given by

T
‖
M(q) := TM(TY (q) + 1) (8.44)

and similarly for τ
‖
M(q).

††Formula (8.43) reads the same for any c-ary —not only dyadic— scaling (compare foot-

note ‡). If we replaced, however, S(n)(q) by IEn

[

2−nqs
(n)
k

]

= c−dnS(n)(q) in the definition of

T (q) (compare (3.11) and (3.19)) then (8.43) would become the appealing

TY (M) = TM(TY ).
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Indeed, since for H-sssi processes V we have TV (q) = qH − 1 for q < q < q and may

indeed write (8.22) in the form T
‖
M(q) = TM(TV (q) + 1) in that case.

Example 8.5. (Subordinated Multifractals) Turning around the usual rôles we
may consider Y =M(LH) and get

TM(LH)(q) =

{

H · TM(q) +H − 1 if q < TM(q) + 1 < q
−∞ else.

Assuming differentiability this leads with (4.11) to FM(LH)(a) = HFM(a/H) + 1−H
which is valid for a = HT ′M(q) with q in the above range; for other a, FM(LH)(a) will
be linear of slope such as to make the graph smooth for all a. ♠

Combining theorem 8.15 and 3.14 we get:

Corollary 8.17 (Lévy processes in multifractal time). Let Y and M be as in
theorem 8.15 with the additional assumption that the increments of Y are independent.
Then, we have the pathwise warp formula

fY(a, ω)
∣

∣

M

a.s.
= FY(a)

∣

∣

M
= f4M(a). (8.45)

Moreover, the multifractal formalism

fY(a, ω)
a.s.
= τ ∗Y(a, ω)

a.s.
= T ∗Y(a) (8.46)

holds for any a for which
(

T
‖
M

)∗

(a)
a.s.
= f4

M
(a) > 0.

A process Y with stationary and independent increments as in corollary 8.17 is
called a Lévy process. In the special case when Y is γ-stable, it is necessarily 1/γ-sssi,
in other words Lévy stable motion, which we dealt with earlier. Jaffard in [54] has
obtained the almost sure dimension based spectrum for a large class of Lévy processes,
in particular Lévy stable motion. Here, we computed the grain based spectra of warped
Lévy processes, provided one has knowledge on the moments or the tail behavior of
the marginals of Y in order to compute TY or FY .

Example 8.6. (Lévy motion in multifractal time) A special case, in which all
assumptions of corollary 8.17 hold, is present if the warped process is Lévy stable
motion, i.e., Y = LH , and where the warp time is a binomial cascade, i.e., M =Mb.
This is true for the singularity exponents h

(n)
k and α

(n)
k without further ado, while for

w
(n)
k one has to check the existence of moments of negative order for An,k (compare

corollary 6.2). ♠

Dimension based spectra

There is a simple class of multifractals in multifractal time on [0, 1] for which the full
multifractal formalism, in particular the dimension based spectra are known. As we
will see the same warp formula (8.43) will hold despite the fact that strictly speaking
the example does not fit in the above framework.
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Full multifractal warp formalism Let Mb and Kb be independent binomial dis-
tribution functions as in (5.2) with properties (i)-(iii) (see (5.5)) and with multipliers

M
(n)
k and K

(n)
k , respectively. To ensure stationarity at least of their dyadic increments

assume in addition that M0
d
=M1 and K0

d
= K1.

Now, let K†b be the inverse function of Kb just as in Section 5.6, i.e., Kb(K
†
b(t)) = t.

Let Y = Mb(K
†
b). Since Mb and K†b are both continuous and strictly increasing, so

is Y and we may define a measure by setting µ([0, t]) := Y(t). Let us check at how
µ distributes mass on the unit interval [0, 1]. Therefore, let tn,k := Kb(k2

−n). These

points partition the unit interval into 2n intervals J
(n)
k := [tn,k, tn,k+1] which have the

length |J (n)k | = tn,k+1 − tn,k equal to

Kb((kn + 1)2−n)−Kb(kn2
−n) = K

(n)
kn
·K(n−1)

kn−1
· · ·K(1)

k1
·K(0)

0

and µ-mass µ(J
(n)
k ) = Y (tn,k+1)− Y (tn,k) equal to

Mb((kn + 1)2−n)−Mb(kn2
−n) =M

(n)
kn
·M (n−1)

kn−1
· · ·M (1)

k1
·M (0)

0 .

Thus, we recognize in this measure µ immediately the measure µc of Section 5.6 with
c = 2 and L

(n)
i = K

(n)
i . In other words, µ is a special case of a so-called statistically

self-similar measure [33, 6, 8] for which equality in the multifractal formalism for the

singularity exponents α
(n)
k and h

(n)
k is well established, and for which T is given through

the implicit equation (compare (5.41))

IE
[

M q
0K

−T (q)
0 +M q

1K
−T (q)
1

]

= 2IE
[

M qK−T (q)
]

= 2IE [M q] IE
[

K−T (q)
]

= 1. (8.47)

For a comparison of (8.47) with the usual warp formula (8.43) let us recall that

IE[M q] = 2−TMb
(q)−1 and IE[K

−T
K
†
b

(q′)
] = 2q

′−1 (8.48)

from (5.25) and (5.40). Setting q′ = TMb
(q)+1 in the last expression we see that (8.47)

is indeed solved by T (q) = TK†
b
(TMb

(q) + 1). We see a reason for (8.43) to hold in the

fact that, though Mb does not have stationary increments of all lengths, nevertheless
the lengths |J (n)k | and the masses µ(J

(n)
k ) are stationary, i.e., of equal distribution for

k = 0, . . . , 2n − 1 (n fixed).

Remark 8.18. (Independence of warp time and warped motion) Note that
(8.43) does not necessarily hold if Y and M are dependent. This follows, e.g., when
choosing Kb to be pathwise equal to Mb. Then, we get Y(t) = t and TY(q) = q −
1. Combining TKb(−TK†

b
(q)) = −q (which follows from (8.48)) with (8.43) we find

TKb(1 − q) = TKb(−TY(q)) = −TMb
(q) − 1 = −TKb(q) − 1. Setting q = 1/2 gives

TKb(1/2) = −1/2. Since TKb(0) = −1 and TKb(1) = 0 we conclude that TKb must be
linear for 0 ≤ q ≤ 1 due to concavity. But this does not hold in general and we must
conclude that (8.43) may fail when the components are dependent. ♣
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Warped, inverse and relative multifractals

In the framework of so-called relative multifractal analysis one aims at obtaining more
flexible multifractal spectra by replacing the usual singularity exponents of a process
M, say

α
(n)
k (M) =

log |M((k + 1)2−n)−M(k2−n)|

log |I(n)k |
=

log |M((k + 1)2−n)−M(k2−n)|

−n log(2)
,

by exponents which take into account a different, hopefully more sensitive measure of
I
(n)
k than its length. More explicitly, the multifractal spectra of Mb relative to Kb are
in terms of the singularity exponents

r
(n)
k =

log |Mb((k + 1)2−n)−Mb(k2
−n)|

log |Kb((k + 1)2−n)−Kb(k2−n)|
.

In the notation of [95] rMb/Kb(θ) = limn r
(n)
kn

(kn2
−n → θ). Comparing with Y =

Mb(K
†
b) from above we find immediately that α

(n)
k (Y) = log µ(J

(n)
k )/ log |J (n)k | coincides

with the ‘relative exponent’ r
(n)
k (Mb/Kb). The only difference is that they ‘live’ in

two different spaces: r
(n)
k is defined for θ-intervals I

(n)
k , and α

(n)
k for t-intervals J

(n)
k =

Kb(I
(n)
k ).

Nevertheless, we may immediately say that the number of intervals I
(n)
k of length

2−n with r
(n)
k ' a grows as (2−n)−f(a) (compare (3.5)) where f = fMb(K

†
b
) = T ∗ from

(8.47). This is exactly the formula ‘fR(α) = β∗(α)’ of [95, p. 160] and can also be found
in [63].

However, it might be appropriate to abandon the Euclidean length |I (n)k | in θ-space
altogether and to replace it by |Kb((k+1)2−n)−Kb(k2

−n)| not only what concerns the
singularity exponent but also in the spectra. Again, (8.37) is key. It helps understand
how to do so as it shows how to transfer resolution from one space to the other: the
value of a′ for which the supremum is attained is the predominant distortion factor by
which K†b ‘expands’ dimension. This suggests the formula f

r
(n)
k

,Mb
(a) = a′ · fMb(K

†
b
)(a).

It holds indeed in the form ‘dim(K
Mb/Kb
α ) = β∗(α) · αKb(q)’ of [95, p. 160].

Choosing Kb to be iid withMb this formula suggests what to expect of a multifractal
analysis of a random measure relative to an independent realization of itself.

Understanding the multifractal structure ofMb with respect toKb is, thus, essentially
equivalent to understanding the structure ofMb warped by K†b, the inverse multifractal
of Kb. Since inverse measures can be defined in general [94] and since the basis of the
relative multifractal formalism has been expanded [17] this principle is bound to hold
in far broader context.

Conclusion

We have presented the coarse grain aspects of multifractal analysis from a most general
point of view which allows to connect the various different approaches currently em-
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ployed in the literature, i.e., various singularity exponents as well as different notions
of dimensions and scaling.

The framework presented proves convenient for exploring the multifractal properties
of the well known random cascade measures as well as self-similar processes. But it
applies also to the novel compound processes we introduced. In subordinating fractional
Brownian motion (fBm) – and more generally stable motion – to multifractal time we
have only scratched the surface of a new class of multifractal objects. Many questions
must jump to mind immediately which are beyond the scope of this paper.

A problem of general interest is the construction of multifractal measures with sta-
tionary increments. In [14, 70, 74, 105] different classes of such processes, each with
appealing properties, are proposed.

From a multifractal point of view one can ask for more precise spectral information
such as exact Hausdorff gauge functions and Hausdorff measures of sample paths,
an issue which has been solved for graphs and images of fBm only in the last years
[107, 108].

In view of the dimension based multifractal spectra it would be interesting to know
to what extent equality in the multifractal formalism holds. A first approach to this
problem could be to focus on time change of Lévy processes.

From a simulation or engineering point of view the new models raise the question
of efficient and accurate estimation of parameters and synthesis. There is a general
need for reliable empirical evidence of multifractal properties of time series, as well
as for plausible, physical explanations of multiplicative structures towards better un-
derstanding. Research in this area could profit from the large literature discussing the
extraction of multifractal parameters out of physical systems which took its beginning
with [42, 45, 46]. On the statistics of multifractal estimators from time series some
work has been done recently [41, 3, 40].

The modelling of fractal and multifractal processes has so far relied mostly on fBm
and cascades. For TCP traffic loads and web access file size processes, e.g., multifractal
cascades such as the binomial provide accurate, yet parsimonious models and have had
a considerable impact [89, 96, 38, 88]. Other traffic loads which are not subject to large
time delay, such as video, are apparently well modelled by fBm. Finally, for financial
data, fBm in multifractal time has been proposed as a model in [68].

For simulation purposes of fBm in multifractal time a good idea is to start with
Wiener motion which has independent increments. Alternatively, one may submit the
randomized Weierstrass function to multifractal time since it is more simple to synthe-
size than fBm. Moreover, modifying approximate models based in the wavelet domain
such as WIG (see [88]) or the FFT based models of [20] should be more practical than
direct synthesis in the time domain in the presence of the strong correlations of fBm.
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