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Abstract— In this paper, we study the effect of users’ traffic
characteristics on the temporal behavior of total downlink
interference in multi-service wireless CDMA networks. We show
that under certain conditions on traffic characteristics that cover
a range of practical situations, downlink interference follows
an asymptotically self-similar process and thus is long-range
dependent. We then obtain the asymptotic outage probability
and show that in a network that is designed based on the
Poisson assumptions the outage probability is degraded by the
interference long-range dependent. Simulation results for actual
cases confirm analytical results.

I. INTRODUCTION

Future personal communication systems support multi-
services including multimedia, voice, and data. A promising
air interface technology for future wireless cellular communi-
cation networks is Code Division Multiple Access (CDMA).
Since CDMA systems have been shown to be interference-
limited [1], multiple-access interference plays an important
role in the performance analysis of such systems and is usually
considered as radio resource indicator. Therefore, proper uti-
lization of more accurate information on the temporal behavior
of the interference can lead to the development of effective
resource control mechanisms. However, the conventional ap-
proaches for modeling interference in wireless CDMA only
use the marginal distribution of the total interference [1], [2],
[3], therefore do not consider its temporal behavior.

In this paper, we consider such temporal behavior for hetero-
geneous services in wireless CDMA networks, which can be
utilized effectively in designing radio resource control mecha-
nisms such as outer-loop power control, call admission control,
and load balancing. These control mechanisms operate in
substantially longer time periods (i.e., from a few milliseconds
to seconds) compared to other mechanisms in the lower layers
including modulation, detection and fast power control. In the
considered time scales, several system parameters in different
network layers cause temporal fluctuation of interferences.
These include, for instance, the total number of active users
(calls), their call/session durations, the allocated power to each
call/session in the corresponding base-station (BS), channel
variations and user mobility. We develop a model that frames
the effect of traffic characteristics on the downlink interference
over long time scale. In our approach the traffic characteristics
at the application layer and the information on the wireless

channels are combined in a cross-layer model to characterize
the downlink interference.

Traffic modeling for voice-only CDMA cellular networks
is based on a Poisson process (see e.g. [1], [4]) that has its
root in telephony networks (for a comprehensive review see
[5]). They assume a Poisson process: calls arrive independently
over time at a constant rate while their corresponding call
durations have exponential distributions. This model is still
almost invariably used to model the arrivals and departures
of calls in the network, even though it may not be an
adequate model for call/packet durations of multi-media and
data traffics with heavy tail distributions [6]. Therefore, the
impact of traffic characteristics on the downlink interference
in a heterogeneous cellular network is different from that
of voice-only networks. The effect of non-Poisson traffic on
the performance of wireless network was first addressed in
[7], where the requirements for supporting such traffic were
examined. It was shown in [8] that the capacity of a CDMA
cellular network, designed for Poisson traffic, is substantially
reduced when the input traffic has long-range dependence.

The effect of packet data traffic on the interference in a data-
centric packet-based CDMA network has been studied in [9],
[10]. They ignore the effects of call admission procedure and
use a method in [11] together with basic notions of a heavy-tail
process to explain the self-similarity in total interference that
is a direct consequence of data users’ traffic characteristics.
Obviously their method is not applicable to multi-service
CDMA cellular networks that support both packet-based and
connection-oriented services. They also assume a very specific
wireless channel that may not be applicable to actual cases.

We use the cross-layer model in [12] to characterize the
downlink interference that is a function of channel auto-
covariance, call/packet-duration distribution, call/packet ar-
rivals, and the auto-correlation of the allocated power to each
call/packets. In [12] we show that in a multi-cell network,
for heavy-tail distribution of call durations, the corresponding
interference follows an asymptotic self-similar (as-s) process.
The respective heavy-tail distribution depends on call du-
rations, bit-rate variations, and channel characteristics. Self-
similar processes are used to characterize long-range depen-
dence in the network traffic (see e.g. [6]).

We then study the effect of self-similarity in the downlink
interference on the outage probability as an indicator of
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the cellular network performance. We consider the outage
probability as the tail probability of an M/M/∞ buffer-less
multiplexer [1], [4], [13]. We obtain the asymptotic outage
probability as a function of self-similarity index using the
results in [14].

We simulate a heterogeneous wireless network and observe
self-similarity in the downlink interference when the call
duration-of at least one service has a heavy-tail distribution.
Simulation results also confirm that the outage probability
increases as a consequence of interference long-range depen-
dence.

Organization of this paper is as follows. The interference
model is presented in Section II. In Section III, we present the
analytical results. Simulation results are presented in Section
IV. The concluding remarks are presented in Section V.

II. INTERFERENCE MODEL

Here we restate the model used in [12] for total downlink
interference. Total downlink interference, I(n), for a consid-
ered user, is a weighted sum of the transmitted power of BSs,
P c(n), for n ∈ Z, Z = {. . . ,−1, 0, 1, . . .} and c = 1, . . . , NC ,
where NC is the number of cells in the network

I(n) =
NC∑

c=1

ξc(n)P c(n)gc(n). (1)

The weighted coefficients are the corresponding channel gains,
gc(n), and average normalized cross-correlation, ξc(n), be-
tween the user’s signal and the received signals of other users
are stationary processes independent of P c(n). Each sample
of I(n) is valid over a window of length Tw seconds that is the
time scale of modeling. We assume that Tw � Tc, where 1/Tc

is the spreading bandwidth of the cellular CDMA network. In
(1) we consider I(n) as the interference received in a user in
cell 1, therefore we assume that the power allocated to the
considered user is not included in P 1(n).

To study I(n), we assume that a regular power transmission
regime is applied network-wide, in which the transmitted
power by any BS is not substantially higher than the trans-
mitted power by other BSs. This assumption is valid if a load
balancing mechanism is applied.

In the time slot n, each BS serves a set of active users
(calls) in its coverage area, therefore the transmitted power by
the BS c, P c(n), is the sum of allocated powers to all calls
in the corresponding coverage area

P c(n) =
J∑

j=1

∑

i∈N

pc
ji(n − υc

ji + 1), (2)

where J is the number of services provided by the network,
N = {1, 2, . . .}, pc

ji(.) is the allocated power of call i of service

j in cell c, and υc
ji ∈ Z is the start time of the ith call in cell c

that receives service j. Calls are enumerated by i in the order
of their arrival, such that in each cell c, υc

ji ≤ υc
ji+1. For the

ith call of service j in cell c with a call duration of τ c
ji ∈ N

seconds, pc
ji(.) is the allocated power in its call duration, and

is equal to zero otherwise.

To characterize I(n), we first need to obtain the char-
acteristics of P c(n) and gc(n). We assume that for each
given cell c and service j, the call duration sequence process
{τ c

ji, i ∈ N}, the new call arrival rates sequence process
{µc

ji(.), i ∈ N}, and the allocated power sequence process
{pc

ji(.), i ∈ N} are independent and identically distributed
(i.i.d.) random processes for all i ∈ N. We denote τ c

ji, µc
ji(n)

and pc
ji(n) by the generic random variables τ c

j , µc
j(n) and

pc
j(n), respectively.
In this model, the traffic characteristics of a user of service

j is specified by three processes, µc
j(n), τ c

j and pc
j(n), where

pc
j(n) is a function of the service type j, the bit-rate, and the

power allocation strategy in the network. In [12] we show
that the downlink interference can be completely specified
by characterization of the traffic characteristics corresponding
to different services provided by the network and channel
processes, gc(n), for all c. In the followings we briefly review
the models we use in this paper for new call arrival process,
call duration process, allocated power process and wireless
channel process.

1) New Call Arrivals: Assuming the arrival rates of new
calls for each service type are less than the values for which
the network was designed, in [12] we show that using a regular
interface-based call admission control, a Poisson distribution
is an appropriate model for call arrivals µc

j(n),

Pr{µc
j(n) = ν} =

(λc
j)

νe−λc
j

ν!
,

where λc
j is the arrival rate.

2) Call Durations: We denote both packet duration and call
duration as “call duration” and assume an arbitrary distribution
for the call duration. For voice service an exponentially
distributed call duration is assumed as in [1]. For non-voice
traffics a general heavy-tail distribution is considered (see e.g.
[6]). A random variable X is called heavy-tailed with infinite
variance, if there exist a slowly varying function L(x) such
that

P (|X| ≥ x) ∼ L(x)x−κ x → ∞
where 0 < κ < 2 and the symbol ‘∼’ means behaves
asymptotically as (i.e. φ(k) ∼ ϕ(k) means: limk→∞

φ(k)
ϕ(k) =

1). A function f(x) > 0, x ∈ R is called a slowly varying
function if for all u ∈ R+, f(ux)

f(x) → 1, as x → ∞.
An example of a heavy tail distribution is Pareto distribution

Pr{τ = l} = η0l
−α−1,

where 1 < α < 2, l ∈ N and

η0
∆=

1
Σ∞

l=1l
−α−1

.

Pareto distribution has been used to model call durations (see
e.g. [15]).

3) Allocated Power to Each Call: For pc
j(n), we note that

for a given channel, the allocated power to a given user at
time slot n is generally a concave function of its bit-rate [1].



4) Wireless Channel: We assume that gc(n) is a second-
order stationary process. The auto-covariance function of
gc(n) is denoted by Cc

g(k). We also assume that

Cc
g(k) ∼ Lc

g(k)k−βc
g , k → ∞ (3)

where k denotes time with a temporal resolution Tw, Lc
g(k)

is a slow varying function and βc
g > 0 is the channel auto-

covariance decay exponent. For the corresponding time scales,
in [12] we show that this model is consistent with slow fading
processes.

III. ANALYTICAL RESULTS

We show that the total downlink interference in multi-
service wireless CDMA networks follows an asymptotically
self-similar process an thus is long range dependent. The self-
similarity emanates from users traffic characteristics. First we
define an asymptotically self-similar and long range dependent
processes.

Definition 1: Asymptotically self-similar process [15] A
real-valued second-order stationary random process I =
(. . . , I(−1), I(0), I(1), . . .) is called asymptotically self-
similar process (as-s), with self-similarity index H = 1−β/2,
0 < β < 1, if

lim
m→∞C(m)(k) =

C(m)(0)
2

(
(k+1)2−β−2k2−β +(k−1)2−β

)
,

(4)
where k ∈ Z+ , Cm(k) is the auto-covariance function of Im

that is the average process of I over blocks of length m.

A process I is as-s if the correlation coefficients of the
average process of block length m as m → ∞ are identical
to those of a self-similar process. A sufficient condition for a
second-order stationary process I to be asymptotically self-
similar is that for k ∈ Z+, k → ∞, the auto-covariance
function of I , C(k), behaves asymptotically as L(k)k−β , (i.e.
C(k) ∼ L(k)k−β), in which 0 < β < 1, and L(k) is a slowly
varying function [15].

Definition 2: Long Range Dependent Process [16] A
stationary process I is long range dependent if there exists a
real number 0 < H < 1 such that for k → ∞ the correlation
of I , ρI(k) satisfies:

ρI(k) ∼ k2H−2. (5)

An asymptotically self-similar process is long-range depen-
dent.

A. Interference Self-similarity

Suppose that the downlink interference process, I =
(. . . , I(−1), I(0), I(1), . . .), is a finite-mean, finite-variance
second-order stationary process. In the following proposition,
we derive the necessary conditions on traffic and channel
characteristics under which the downlink interference is an
as-s process.

Proposition 1 [12]: Consider the downlink interference
process, I , and let βc

P , c = 1, . . . , C, satisfy

J∑

j=1

λc
jPr{τ c

j = k}rc
j(k)(k) ∼ Lc

P (k)k−βc
P −2, k → ∞, (6)

where Lc
P (k) is a slowly varying function. Now, I is an as-s

process with self-similarity index H = 1−β∗/2 if there exists
at least one c such that 0 < βc

P < 1 or 0 < βc
g < 1, and

β∗ = min
c

min{βc
P , βc

g}. (7)

Self-similarity is a phenomenological model for interference
that can be specified by a small number of parameters. Self-
similar behavior of the downlink interference is in sharp
contrast with the conventional Poisson-based traffic models
used to model the downlink interference. Here we show the
outage probability in a network that is designed based on the
Poisson based model would be degraded in the presence of
self-similarity of downlink interference.

B. Effect of interference self-similarity on the outage proba-
bility

CDMA systems have been shown to be interference-limited.
It is simple to show that outage can be modelled as the tail
probability of a M/M/∞ queue when the stochastic model
of the interference can be evaluated [1], [4], [13]

Poutage = Pr{I > Ith}, (8)

where I is the interference level and Ith is the interference
threshold. For the interference process which is stationary
and short-range dependent, the outage probability which is
modelled as tails of the distribution of the queue length should
satisfy

Poutage ≈ e−δIth (9)

for some positive δ that is a function of cellular network
parameters [14]. The asymptote in (9) holds in great generality.
For self-similar interference we obtain the asymptotic outage
probability in the following Proposition.

Proposition 2: The outage probability for self-similar inter-
ference with self-similarity index H and maximum threshold
level Ith is

Poutage ≈ e−δI
2(1−H)
th . (10)

Proof outline: Proposition 2 is proved using Corollary 2.3 in
[14] that gives the distribution of the interference with constant
Is > EI where Is is the interference level corresponding to
the service rate provided by the base-station to active calls

lim
Ith→∞

b−2(1−H) log Pr{I > Ith} = −δ, (11)

where
δ = inf

c>0
c−2(1−H)λ∗(c + Is) (12)



TABLE I

SIMULATION PARAMETERS

Parameter Interpretation
Number of BSs 19
Cell Radius 100 m
BSs Transmit Power 10 W
Physical Layer Based on UMTS
Power Control Fast Power Control 1500/s
Tw 10 ms
Standard Deviation of Fading 8 dB
Loss Exponent -4
Tf 100 msec
Eξ1 0.5
Services 12.2 kbps voice, 32 and 64 kbps data
12.2 kbps voice Eb/I0 = 5 dB, 5 Erlangs
32 kbps data Eb/I0 = 3 dB

Pareto Dist., α1 = 1.5, Eτ1 = 2 s
64 kbps data Eb/I0 = 2 dB

Pareto Dist., α2 = 1.8, Eτ2 = 1.5 s

and λ∗(x) is the Legendre transform of λ(x),

λ∗(x) = sup
θ
{θx − λ(θ)},

and λ(θ) = limn→∞ λn(θ) where

λn(θ) ∆= n−2(1−H) log Eeθn1−2H ∑ n
k=1 I(k).�

Note that for H = 1/2, (9) and (10) are the same. It is
simple to show that for a given set of network parameters
Poutage is increased as a consequence of self-similarity in total
interference.

IV. SIMULATION RESULTS

We consider a two-tier hexagonal cell configuration with
a wrap-around technique. A UMTS cellular wireless network
[17], with a fast power controller running at 1500 updates per
second, is simulated. The average cross-correlation between
the codes (Eξ1) is assumed to be 0.5. Three types of services
are used: 12.2 kbps voice (with the required bit energy to
the interference spectral density Eb/I0 of 5dB), 32 kbps
data (with Eb/I0 of 3 dB) and 64 kbps data (with Eb/I0

of 2 dB). We assume 5 Erlangs of voice traffic. For data
services, we assume a Pareto call duration (see Section II)
with α1 = 1.5, Eτ1 = 2 sec and α2 = 1.8, Eτ2 = 1.5 sec.
The modeling time scale is Tw = 10 msec. The arrival rates of
both data services have a Poisson distribution with an average
rate of 10 arrivals per second. Channel fading is based on
the Gudmundson model [18] with σc = 8 dB and Tf = 100
msec. A distance-dependent channel loss with path exponent
γc = −4 for c = 1, . . . , C is considered. Users of different
services are distributed uniformly, and there are no users
with soft-hand-off condition. A power-based call admission
control mechanism is also applied in the downlink, in which
a new arrival is granted if serving that user does not cause
the total BS transmitted power to exceed its corresponding
maximum value [12]. Simulation parameters are presented in
Table I. The heavy-tail call durations of data services satisfy
the conditions of Proposition 1, which gives the self-similarity
index H = 0.75.
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Fig. 1. Normalized variance plot for the total received downlink interference
in the simulated network.

In the above configuration, we study the time trace of the
received downlink interference measured at different locations.
To estimate the self-similarity index H , we use the variance
plot method in [16], and divide I into non-overlapping blocks
each with m samples. For an asymptotic self-similar process
with self-similarity index H , the variance of the mean pro-
cesses for m → ∞ is L(m)m2H−2, 0.5 < H < 1 [15].
Therefore, in a logarithmic scale, the variance is a straight line.
Using the slope of this line, we can estimate H . Fig. 1 shows
the variance in the logarithmic scale. Using a linear curve
fitting, we obtain H = 0.63, that confirms the self-similarity of
the total interference. The discrepancy between the estimated
value of H and its value obtained from Proposition 1 is mainly
due to the fact that the BS transmitted power exceeds its
predetermined value, which results in rejecting some calls.

We also obtain the outage probability for a case with the
above setting but instead of the Pareto traffic we have the
equivalent exponential call duration distribution with Eτ1 = 2
s and Eτ2 = 1.5 s. The evaluated outage probability for the
case of heavy tail traffic is 0.0012 and for the case of heavy
tail call duration is 0.0035 that indicates a significant increase
in the outage probability.

V. CONCLUSIONS

In this paper, we have studied the effect of users’ traffic
characteristics on the temporal behavior of total downlink in-
terference in multi-service wireless CDMA networks. We have
shown that under certain conditions on traffic characteristics
that cover a range of practical situations, the downlink inter-
ference follows an asymptotically self-similar process and thus
is long-range dependent. The asymptotic outage probability is
then obtained and shown that in a network that is designed
based on the Poisson assumptions the outage probability
is degraded by the interference long range dependent that
emanates from its self-similarity. Simulation results for actual
cases confirm analytical results.
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