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Reurrene and transiene of branhing random walks aredynamially stableSebastian MüllerMathematis DepartmentThe Weizmann Institute of SieneRehovot 76100, Israel.dr.sebastian.mueller�gmail.omJuly 27, 2009AbstratConsider a sequene of i.i.d. random variables Xn where eah random variable is refreshed indepen-dently aording to a Poisson lok. At any �xed time t the law of the sequene is the same as forthe sequene at time 0 but at random times almost sure properties of the sequene may be violated. Ifthere are suh exeptional times we say that the property is dynamially sensitive, otherwise we all itdynamially stable. In this note we onsider branhing random walks on Cayley graphs and prove thatreurrene and transiene are dynamially stable. Our proof ombines tehniques from the theory ofbranhing random walks with those of dynamial perolation.Keywords: branhing random walk, reurrene and transiene, dynamial sen-sitivityAMS 2000 Mathematis Subjet Classifiation: 60J25, 60J801 IntrodutionIn Benjamini et al. [1℄ several properties of i.i.d. sequenes are studied in the dynamial pointof view. In partiular, it is proven that transiene of the simple random walk on the lattie
Z

d is dynamially stable for d ≥ 5, and dynamially sensitive for d = 3, 4. While reurrene isdynamially stable for d = 1, see [1℄, it is dynamially sensitive in dimension d = 2, omparewith Ho�man [7℄. Khoshnevisan studied in [9℄ and [10℄ other properties of dynamial randomwalks. We also refer to a reent survey [12℄ on dynamial perolation. In this note we de�nedynamial branhing random walks on Cayley graphs and prove that reurrene and transieneare dynamially stable, ompare with Theorem 2.1. This result arries over to branhing randomwalks on in�nite onneted graphs, ompare with Remark 2.2.1
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1.1 Random WalksLet us �rst ollet the neessary notations for random walks on groups; for more details werefer to [14℄. Let G be a �nitely generated group with group identity e, the group operationsare written multipliatively (unless G is abelian). Let q be a probability measure on a �nitegenerating set of G. The random walk on G with law q is the Markov hain with state spae
G and transition probabilities p(x, y) = q(x−1y) for x, y ∈ G. Equivalently, the proess anbe desribed on the produt spae (G, q)N: the nth projetions Xn of GN onto G onstitutea sequene of independent G-valued random variables with ommon distribution q. Hene therandom walk starting in x ∈ G an be desribed as

Sn = xX1 · · ·Xn, n ≥ 0.If not mentioned otherwise the random walk starts in the group identity e. Let P denote thetransition kernel of the random walk and p(n)(x, y) = P(Sn = y|S0 = x) be the probability to gofrom x to y in n steps. We will assume the random walk to be irreduible, i.e., for all x, y thereexists some k suh that p(k)(x, y) > 0. Denote G(x, y|z) =
∑∞

n=0 p
(n)(x, y)zn the orrespondinggenerating funtions. The inverse of the onvergene radius of G(x, y|z) is denoted by ρ(P ).There are two well known properties of ρ(P ):

ρ(P ) = lim sup
n→∞

(

p(n)(x, y)
)1/n

= sup
|F |<∞

ρ(PF ), (1)where ρ(PF ) is the largest eigenvalue of the matrix (PF (x, y))x,y∈F de�ned by PF (x, y) = P (x, y)for x, y ∈ F .1.2 Branhing Random WalksWe use the interpretation of tree-indexed random walks, ompare with [2℄, to de�ne the branhingrandom walk (BRW). Let T be tree with root r. For a vertex v of T let |v| be the (graph) distanefrom v to the root r. We label the edges of T with i.i.d. random variables with distribution q.The random variable Xv is the label of the edge (v−, v) where v− is the unique predeessor of
v, i.e., |v−| = |v| − 1. De�ne Sv = e ·

∏|v|
i=1Xvi

where 〈v0 = r, v1, . . . , v|v| = v〉 is the uniquegeodesi from r to v. Note that the proess is desribed on the produt spae (G, q)T .A tree-indexed random walk beomes a BRW if the underlying tree is a realization of aGalton�Watson proess with o�spring distribution µ = (µ0, µ1, . . .) and mean m =
∑

k kµk. Forease of presentation we will assume that the Galton�Watson proess survives almost sure, i.e.,
µ0 = 0, and that m > 1 in order to exlude the trivial ase µ1 = 1. We say the BRW is reurrentif P(Sv = 0 for in�nitley many v) = 1 and transient if P(Sv = 0 for in�nitley many v) = 0. Here
P does orrespond to the produt measure of the Galton�Watson proess and the tree-indexedrandom walk: we pik a realization T (ω) of the Galton�Watson proess aording to µ andde�ne the BRW as the tree-indexed random walk on T (ω). Alternatively we ould say that theBRW is reurrent if for a.a. realization T (ω) the tree-indexed random walk is reurrent, i.e.,
P

(

∑∞
n=1

∑

|v|=n 1{Sv = e} = ∞
)

= 1, where P orresponds to (G, q)T (ω).2



We have the following lassi�ation due to [4℄:Theorem 1.1. The BRW is transient if and only if m ≤ 1/ρ(P ).Remark 1.1. There is the following equivalent desription of BRW. At time 0 we start the proesswith one partile in e. At time 1 this partile splits up aording to some o�spring distribution
µ. Then these o�spring partiles move (still at time 1) independently aording to P . TheBRW is now de�ned indutively: at eah time eah partile splits up independently of the othersaording to µ and the new partiles move then independently aording to P .2 Dynamial BRWLet us introdue the dynamial proess. Fix a tree T . For eah v ∈ T , let {Xv(t)}t≥0 be anindependent proess that updates its value by an independent sample of q with rate 1. Formally,onsider i.i.d. random variables {X(j)

v : v ∈ T , j ∈ N} with law q, and an independent Poissonproess {ψ(j)
v }j≥0 of rate 1 for eah v ∈ T . De�ne

Xv(t) := X(j)
v for ψ(j−1)

v ≤ t < ψ(j)
v , (2)where ψ(0)

v = 0 for every n. The distribution of (Xv(t))v∈T is qT for every t ≥ 0. Denote P theprobability measure on the underlying probability spae on whih the dynamial BRW proessis de�ned. In the following P, E will always orrespond to the dynamial version while P, Edesribe the non-dynamial proess.Due to Theorem 1.1 we have with Fubini's TheoremP



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for Lebesgue-a.e. t = 0 (3)if m ≤ 1/ρ and equals 1 if m > 1/ρ(P ). The result of this note is that there are no exeptionaltimes for transiene and reurrene of BRW:Theorem 2.1. We onsider a BRW on a Cayley graph G with law q and o�spring distribution
µ (whose support exludes 0) and mean m > 1. Then we have:

• if m ≤ 1/ρ(P ) then P



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for all t = 0

• if m > 1/ρ(P ) then P



∞
∑

n=1

∑

|v|=n

1{Sv(t) = e} = ∞ for all t = 13



Remark 2.1. The statement of Theorem 2.1 holds true if we use a dynamial Galton�Watsonproess to de�ne the dynamial BRW. Observe hereby that superritiality of a Galton�Watsonproess is dynamially stable and that Equation (4) an be adapted without hanging the fatthat ∑P(Zn > 0) <∞.Remark 2.2. Theorem 2.1 an be generalized to branhing random walks on graphs and evenGalton�Watson proesses with an in�nite number of types. Observe hereby that if the Galton�Watson proess has an in�nite number of types we an speak of loal and global survival. Loalsurvival means that every type survives with positive probability and global survival that theproess on its own survives with positive probability, ompare with [5℄. Theorem 2.1 generalizesto: there are no exeptional times for loal survival for Galton�Watson proesses with an in�nitenumber of types. The treatment of global survival is in general more di�ult and even moresubtle sine ritial proesses may survive or die out. Therefore the study of exeptional timesfor global survival/extintion is one of the next steps to go.Remark 2.3. Let us onsider a transient random walk Sn =
∑n

i=1Xi on Z (or R) with E[Xi] > 0.We assume that there exists a rate funtion I(·) satisfying
−I(a) = lim

n→∞

1

n
log P(Sn ≤ an) for a ≤ E[Xi].Denote by mn the minimal position of a partile at time n; mn = min|v|=n Sv. There is thelassial result that limn→∞

mn

n = inf{s : I(s) ≤ logm}. Combining the proof of Theorem 18.3in [11℄ with the ideas of the proof of Theorem 2.1 one an see that there are no exeptional timesfor the (linear) speed, i.e., limn→∞
mn(t)

n = inf{s : I(s) ≤ logm} for all t. Furthermore, in theritial ase m = 1/ρ(P ) we have that mn/n → 0 but mn → ∞ as n → ∞. The seond orderbehaviour is more subtle: while for a wide range of BRW mn/ log n onverges in probabilityit does in general not onverge almost sure. We refer to [8℄ for more details and referenes onreent results. In this respet the study of exeptional times for the seond order behaviour is ofinterest.3 Proof of Theorem 2.1The proof relies on the fat that reurrene of BRW is equivalent to the existene of (reurrent)seeds that were introdued in [3℄. A seed is a �nite subgraph suh that the BRW restrited tothis subgraph may explode (or survive) with positive probability. The partiles leaving the seedthen eventually �ll the whole graph. To make this more preise let us introdue the followingnotations.We denote BN = {x ∈ G : d(e, x) ≤ N} the ball of radius N around e in standard wordmetri d(·, ·). Let us onsider a trunated version SN
n of the random walk Sn where we kill therandom walk and bury it in † if it leaves the ball BN . More formally, let SN

n = Sn if Si ∈ BNfor all i ≤ n and † otherwise. This random walk indues a branhing random walk on BN ∪ {†}in the following way: SN
v = Sv if Sw ∈ BN for all verties w on the geodesi from r to v and

SN
v = † otherwise. 4



Lemma 3.1. If BRW on G is reurrent then a.s. there exists a (random) K suh that
∑

n

∑

|v|=n

1{SK
v = e} = ∞Proof. We make use of the partile interpretation of the BRW, ompare with Remark 1.1, andonsider a sequene of embedded branhing proesses. As in [5℄ we onstrut an embeddedGalton�Watson proess ounting the number of partiles in the origin. The �rst generation ofthis proess is formed by those partiles that are the �rst in their anestry line (of the BRW)to return to e. The proess is de�ned indutively: the i-th generation onsists of those partilesthat are the i-th partile in their anestry line to return to e. Denote by ψ(1)

i the size of the
i-th generation. Observe that ψ(1)

i ∈ N∪ {∞} is a Galton�Watson proess with mean Eψ
(1)
1 > 1sine the BRW is reurrent. We de�ne a trunated version of the latter proess by ountingonly those partiles whose anestors were all in the ball of radius N around e. Let ψ(N,1)

i be thesize of the trunated i-th generation and let us hoose N suh that Eψ
(N,1)
1 > 1. Hene ψ(N,1)

iis a superritial Galton�Watson proess that survives with positive probability q. If this �rstproess dies out, we de�ne a seond proess ψ(N,2)
i analogously to the �rst one but where e isreplaed by some position that is oupied by some partiles in BN+1 at the time when the �rstproess dies out, i.e., the time when eventually all partiles have left BN . Again, the proess

ψ
(N,2)
i survives with positive probability q. Indutively we obtain a sequene of independentsuperritial Galton�Watson proesses with extintion probabilities 1 − q < 1. Hene, thereexists a.s. some j∗ suh that the proess ψ(N,j∗)

i survives. Letting K = N + j∗ we have that
∑

|v|=n 1{SK
v = e} > 0 for in�nitely many n.Proof of Theorem 2.1Transiene is dynamially stable: It is onvenient to de�ne an auxiliary random variable τ ,whih is exponentially distributed with mean 1 and independent of (Xv(t))v∈T ,t≥0, omparewith Setion 3 in [1℄. Let N ∈ N and de�ne

ZN
n :=

∫ τ

0

∑

|v|=n

1{SN
v (t) = e}dt.For ease of presentation we omit the supersript N and just write Zn for ZN

n .By Fubini's Theorem we have E[Zn] = mnp
(n)
N (e, e). Observe, that for every �nite set F wehave that ρ(P ) > ρ(PF ), ompare with Chapter 2 in [13℄. Hene E[Zn] ≤ qn

N for some qN < 1.We follow the line of proof of Lemma 5.6 in [1℄. In what follows we only onsider those n ∈ Nsuh that P(Sn = e) > 0. We have for n ≥ 1P(Zn > 0) =
E[Zn]E[Zn|Zn > 0]

.Let σ := inf{t ≥ 0 : Sv(t) = e for some v ∈ Tn}. Conditioned on the event {Zn > 0} we have
σ ∈ [0, τ). Let |v| = n be suh that Sv(σ) = e and 〈r, v1, v2, . . . , vn = v〉 the geodesi from r to5



v. By the strong Markov property and the memoryless property of τ , we haveP[τ > σ + 1/n,Xvk
does not hange its value during t ∈ [σ, σ + 1/n]|Zn > 0] =

(

1

e

)1/n 1

e
. (4)If the above event ours, then Zn ≥ 1/n. HeneP[Zn ≥ 1/n|Zn > 0] ≥ 1/e2, and E[Zn|Zn > 0] ≥

1

ne2
.Eventually, P(Zn > 0) ≤ e2nqn

N ∀nand hene ∑

nP(Zn > 0) < ∞. By the lemma of Borel�Cantelli for all N there are no times tsuh that ∑

|v|=n 1{SN
v (t) = e} > 0 for in�nitely many n and thereforeP(

∃N ∃t :
∑

n

∑

|v|=n

1{SN
v (t) = e} = ∞

)

= 0.Dynamial stability of transiene now follows with Lemma 3.1.Reurrene is dynamially stable: Let us �rst onsider the non-dynamial BRW. Sine m <

1/ρ(P ) we have with equation (1) that there exists some k ∈ N suh that p(k)(e, e) > m−k.It's rather standard, e.g. ompare with proof of Theorem 18.3 in [11℄, to de�ne the followingembedded proess (ξn)n≥1 where we observe the proess only at times ik and kill all partilesthat are not in e at these times. Then ξn desribes the number of partiles at e at time nk. Sine
E[ξ1] = p(k)(e, e)mk > 1 the proess ξn is a superritial Galton�Watson proess. Hene, it an bewritten as ξn =

∑ξn−1

i=1 Yn,i, where Yn,i are i.i.d. random variables with E[Yn,i] = p(k)(e, e)mk > 1.Now, let M be suh that E[min{M,Yn,i}] > 1 and let Xn,i = min{M,Yn,i}. The dynamialversion of the branhing random walk indues a dynamial proess de�ned as
Zn(t) =

Zn−1(t)
∑

i=1

Xn,i(t),where Xn,i(t) is the dynamial version of Xn,i. As before P denotes the probability measure forthe non-dynamial proess while P desribes the dynamial version. Analogously to the studyof the nonritial ases in [6℄ let for all indies i, n
inf
[a,b]

Xn,i = inf
t∈[a,b]

Xn,i(t),and indutively
inf
[a,b]

Zn =

inf [a,b] Zn−1
∑

i=1

inf
[a,b]

Xn,i.Observe 6



P(inf
[a,b]

Xn,i = k) ≥ P(Xn,i = k)

(

1

e

)(b−a)Mk+1and hene for some ε > 0 E[ inf
[0,ε]

Xn,i] ≥ m

(

1

e

)ε

> 1.Therefore, the Galton�Watson proess de�ned by X̃n,i = inf [0,ε]Xn,i is superritial and henethere are no exeptional times in the interval [0, ε]. Repeating the arguments for the intervals
[kε, (k + 1)ε] and using ountable additivity onludes the proof for m > 1.Aknowledgment: Thanks to Itai Benjamini for suggesting this problem and introduing meto the onept of dynamial sensitivity.Referenes[1℄ Itai Benjamini, Olle Häggström, Yuval Peres, and Je�rey E. Steif. Whih properties of a randomsequene are dynamially sensitive? Ann. Probab., 31(1):1�34, 2003.[2℄ Itai Benjamini and Yuval Peres. Markov hains indexed by trees. Ann. Probab., 22(1):219�243, 1994.[3℄ Franis Comets and Serguei Popov. On multidimensional branhing random walks in random envi-ronment. Ann. Prob., 35(1):68�114, 2007.[4℄ Nina Gantert and Sebastian Müller. The ritial branhing Markov hain is transient. MarkovProess. and Rel. Fields., 12:805�814, 2007.[5℄ Nina Gantert, Sebastian Müller, Serguei Popov, and Marina Vahkovskaia. Survival of branh-ing random walks in random environment. to appear in Journal of Theoretial Probability, DOI10.1007/s10959-009-0227-5, 2009+.[6℄ Olle Häggström, Yuval Peres, and Je�rey E. Steif. Dynamial perolation. Ann. Inst. H. PoinaréProbab. Statist., 33(4):497�528, 1997.[7℄ Christopher Ho�man. Reurrene of simple random walk on Z
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