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Abstract

A fractional non-Markov Poisson stochastic process has been developed based on fractional general-

ization of the Kolmogorov–Feller equation. We have found the probability of n arrivals by time t for
fractional stream of events. The fractional Poisson process captures long-memory effect which results in

non-exponential waiting time distribution empirically observed in complex systems. In comparison with the

standard Poisson process the developed model includes additional parameter l. At l ¼ 1 the fractional

Poisson becomes the standard Poisson and we reproduce the well known results related to the standard

Poisson process.

As an application of developed fractional stochastic model we have introduced and elaborated fractional
compound Poisson process.
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1. Introduction

The main experimentally observed features of anomalous kinetic phenomena in complex sys-
tems are non-exponential time and non-Gaussian space patterns [1,2]. To describe the patterns
fractional generalizations of the diffusion, diffusion–advection and Fokker–Planck type equations
have been developed and studied recently [1–3]. From physical point of view the non-exponential
evolution is caused by long-run memory effects in complex systems. From mathematical point of
view fractional generalization of the kinetic equations results from substitution instead space and
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time derivatives the derivatives of fractional order. The current status and history of the fractional
kinetic problem are presented in recent reviews [1,2].
One of important feature of statistical analysis of a counting random process is analysis of

statistics of interarrival times. It is well known that the Poisson model predicts exponential
probability distribution of interarrival times (see, for example [4]). Recently the empirical ob-
servations of failure of the Poisson model were found. The sizes (in number of bytes) or durations
(measured in seconds) of a set of the Web network sessions or connections exhibit the long-tailed
property, see, for example Fig. 5 in [5] and references there. In other words, the probability of
duration of network sessions decreases by power law at large session-times instead of exponential
decay predicted by the standard Poisson model and well confirmed empirically for phone com-
munication connections.
To understand the origin of the observed power law asymptotic behavior of probability dis-

tribution function of interarrival times we propose non-Markov fractional Poisson model based
on fractional generalization of the Kolmogorov–Feller equation [3,6,9].
To explain where the fractional Kolmogorov–Feller equation comes from let us remind the

standard Kolmogorov–Feller equation for probability distribution function Pðx; tÞ [3,4]
oP ðx; tÞ
ot

¼
Z 1

�1
dy wðyÞ½P ðx� y; tÞ � Pðx; tÞ�; ð1Þ

P ðx; t ¼ 0Þ ¼ dðxÞ;
here wðyÞ is probability density ‘‘to make a step’’ of the length y.
From point of view of the Montroll–Weiss continues time random walk (CTRW) model [1,6–9]

the Kolmogorov–Feller equation (1) belongs to the type of master equations and describes sit-
uation when each consequent step of random length y is made after random waiting time t.
Moreover randomness of step length is distributed in accordance with wðyÞ while waiting time t
has exponential distribution wðtÞ
wðtÞ ¼ e�t; tP 0: ð2Þ

Therefore, the exponential waiting time distribution wðtÞ is the origin for the first order time
derivative in the left side of Eq. (1). Fractional generalization of Eq. (1) is based on the fractional
generalization of the waiting time distribution wðtÞ. In [3] the fractional waiting time distribution
function wlðtÞ was proposed as the following integral (see Eq. (7.6) Ref. [3])
wlðtÞ ¼
sinpl

p

Z 1

0

dqe�qt

ql þ q�l þ 2 cos pl
; 0 < l6 1; ð3Þ
and called a fractional Poissonian distribution.
When the parameter l 6¼ 1 the fractional waiting time distribution becomes broader and

possesses of non-exponential power-law behavior at large t. The spreading of the waiting time
distribution leads to non-Markovian non-exponential evolution, the latter being a typical mani-
festation of temporal phenomena inherent in complex physical systems.
In this paper we have developed and elaborated the fractional Poisson distribution based on the

fractional generalization of the Kolmogorov–Feller equation. We take the special form of wðyÞ,
wðyÞ ¼ mdðy � 1Þ, where d is delta function and the parameter m has physical dimension ½m� ¼ sec�l
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(see Eq. (19)). It results to probability distribution function of a counting process when the total
number of ‘‘items’’ that have arrived up to time t is governed by the fractional stream. In com-
parison with the standard Poisson process the developed model includes additional parameter l,
0 < l6 1. Thus, the model provides fractional generalization of the standard Poisson process, to
which it reduces at l ¼ 1.
The paper is organized as follows.
In Section 1 we explain how and where the fractional Poisson comes from. The basic definitions

of the standard Poisson random process are reminded in Section 2. In Section 3 we define the
fractional Poisson model, obtain new probability distribution function Plðn; tÞ, evaluate mean and
variance, find probability distribution function of interarrival times. Fractional compound
Poisson process is defined and elaborated in Section 4 as an application of the developed model.
In Section 5 we discuss the relationships between the developed fractional model and the standard
Poisson random process.
2. The Poisson process

2.1. Generation function

The standard Poisson process is concerned with the distribution of arrivals under applicable
assumptions. The probability of a single arrival during a small time interval Dt is nDt, with rate n
and more than a single arrival during Dt is negligible. Let Pðn; tÞ be the probability of n items
having arrived by time t. The probability Pðn; tÞ satisfies the normalizing conditionP1

n¼0 P ðn; tÞ ¼ 1 because either nothing arrived or something must have arrived by time t. To see
what happens during the subsequent small interval Dt we write
Pð0; t þ DtÞ ¼ P ð0; tÞð1� nDtÞ; ð4Þ

Pðn; t þ DtÞ ¼ P ðn; tÞð1� nDtÞ þ P ðn� 1; tÞnDt; nP 1: ð5Þ

The Eq. (4) gives the probability that no arrivals have occurred by time t þ Dt. This probability

may be related to the state of the system at time t. Thus, by the law of compound probabilities of
two events which occur independently (i.e., one takes the product of the probabilities of these
events), it is equal to the probability that nothing had arrived by the time t multiplied by the
probability that nothing arrived during Dt. For the case nP 1 this property (i.e., having the same
number at time t and nothing arriving during Dt) also holds, but in addition there might have been
n� 1 arrivals during time t, followed by an additional arrival during Dt. The product of these
quantities yields the second term on the right of Eq. (5). We have not mentioned the possibility of
more than one arrival during the small interval since it is negligible and can be shown to vanish in
what follows.
On multiplying, transposing P ðn; tÞ to the left, and dividing by Dt, the Eq. (5) becomes
Pðn; t þ DtÞ � P ðn; tÞ
Dt

¼ nðPðn� 1; tÞ � P ðn; tÞÞ; nP 1:
At the limit Dt ! 0 by definition, the left side is the first order time derivative and we have
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oP ð0; tÞ
ot

¼ �nPð0; tÞ; ð6Þ

oP ðn; tÞ
ot

¼ nðPðn� 1; tÞ � Pðn; tÞÞ; nP 1; ð7Þ

P ðn; t ¼ 0Þ ¼ P0ðnÞ:

Eq. (7) is linear differential equation with respect to t and difference equation with respect to n,

generally called differential–difference equation.
To solve Eqs. (6) and (7) it is convenient to use the method of generating function. By intro-

ducing the generating function Gðs; tÞ
Gðs; tÞ ¼
X1
n¼0

snP ðn; tÞ; ð8Þ
we see from Eq. (8) that the probability P ðn; tÞ is obtained by differentiating Gðs; tÞ n times with
respect to s, then dividing by n!, and putting s ¼ 0, that is
P ðn; tÞ ¼ 1

n!
onGðs; tÞ

osn

����
s¼0

: ð9Þ
Now by multiplying Eq. (7) by sn and summing over n as a result we obtain the following linear
differential equation for the generating function Gðs; tÞ:
oGðs; tÞ
ot

¼ nðs� 1ÞGðs; tÞ: ð10Þ
One should specify the initial at t ¼ 0 condition for the generating function. In general, the time
origin t ¼ 0 for a specific study could be chosen anywhere, even after arrivals had actually oc-
curred. Indeed, it may be that, by t ¼ 0, k units had arrived. In that case, Pðn; 0Þ ¼ Pðn; t ¼ 0Þ is
zero if n 6¼ k and unity if n ¼ k. Thus we can write
Gðs; t ¼ 0Þ ¼
X1
n¼0

snPðn; t ¼ 0Þ ¼ skP ðk; t ¼ 0Þ ¼ sk: ð11Þ
It is easily to see that solution of the problem defined by Eqs. (10) and (11) has the form
Gðs; tÞ ¼ sk expfnðs� 1Þtg: ð12Þ

Further, suppose, as usual, that at t ¼ 0 nothing had arrived. Then Gðs; t ¼ 0Þ ¼ 1 since k ¼ 0

and we get the equation for the generation function
Gðs; tÞ ¼ expfnðs� 1Þtg: ð13Þ

Using Eqs. (13) and (9) we get the well known equation for the probability P ðn; tÞ of n items

having arrived by time t
P ðn; tÞ ¼ ðntÞn

n!
e�nt: ð14Þ
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This equation shows that the number of arrivals occurring in time interval t has a Poisson
distribution with mean nt. Hence, the physical meaning of the parameter n can be interpreted as
the average number of arrivals occurring per unit time. The parameter n has physical dimension
½n� ¼ sec�1.

2.2. Waiting time distribution

A time between two successive arrivals is called as waiting time and it is a random variable. The
waiting time probability distribution function is an important attribute of any arrival or counting
random process. The waiting time probability distribution function wðsÞ represents the proba-
bility density of event that an arrival is occurred at the time moment tk ¼ tk�1 þ s after the pre-
vious one happened at the moment tk�1. Therefore, the probability that interarrival time tk � tk�1
between the successive arrivals satisfies s6 tk � tk�16 sds is equal to wðsÞds. Further, the prob-
ability P ðsÞ that a given interarrival time is greater or equal to s can be expressed in term of
probability distribution function wðsÞ by the following way:
PðsÞ ¼
Z 1

s
dt0 wðt0Þ ¼ 1�

Z s

0

dt0 wðt0Þ; ð15Þ
or
wðsÞ ¼ � d

ds
P ðsÞ: ð16Þ
It is easy to see that
R s
0
dt0 wðt0Þ is the probability of at least one arrival at any moment in the

interval ½0; s�. To evaluate this probability we apply Eq. (14). Then we write
Z s

0

dt0wðt0Þ ¼
X1
n¼1

Pðn; sÞ ¼ 1� e�ns: ð17Þ
By combining Eqs. (15)–(17) we finally find
wðsÞ ¼ ne�ns: ð18Þ

The exponential distribution is manifestation of the Markov property of the Poisson random

process.
3. The fractional Poisson process

3.1. Generation function

We introduce the fractional Poisson process as the counting process with probability Plðn; tÞ of
arriving n items (n ¼ 0; 1; 2; . . .) by time t. The probability Plðn; tÞ is governed by the following
special form of the fractional Kolmogorov–Feller equation:
0Dl
t Plðn; tÞ ¼ m Plðn

�
� 1; tÞ � Plðn; tÞ

�
þ t�l

Cð1� lÞ dn;0; 0 < l6 1; ð19Þ
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with normalization condition
1 T
X1
n¼0

Plðn; tÞ ¼ 1; ð20Þ
where the operator of fractional derivation 0D
l
t is defined as the Riemann–Liouville fractional

integral, 1
0Dl
t f ðtÞ ¼

1

Cð�lÞ

Z t

0

dsf ðsÞ
ðt � sÞ1þl ;
and dn;0 is the Kronecker symbol, the gamma function CðlÞ has the familiar representation
CðlÞ ¼

R1
0
dt e�ttl�1, Rel > 0, and parameter m has physical dimension ½m� ¼ sec�l. The initial

condition Plðn; t ¼ 0Þ ¼ dn;0 is incorporated in Eq. (19). One can consider the fractional differ-
ential–difference equation (19) as generalization of Eqs. (6) and (7).
To solve Eq. (19) it is convenient to use the method of generating function. Namely, we in-

troduce the fractional generating function Glðs; tÞ
Glðs; tÞ ¼
X1
n¼0

snPlðn; tÞ: ð21Þ
Then by multiplying Eq. (19) by sn, summing over n we obtain the following fractional dif-
ferential equation for the generating function Glðs; tÞ:
0Dl
t Glðs; tÞ ¼ m

X1
n¼0

snPlðn
 

� 1; tÞ �
X1
n¼0

snPlðn; tÞ
!

þ t�l

Cð1� lÞ

¼ mðs� 1ÞGlðs; tÞ þ
t�l

Cð1� lÞ : ð22Þ
The solution of this fractional equation has a form
Glðs; tÞ ¼ Elðmtlðs� 1ÞÞ; ð23Þ

where ElðzÞ is the Mittag-Leffler function given by its series representation [13–15]
ElðzÞ ¼
X1
m¼0

zm

Cðlmþ 1Þ : ð24Þ
The Mittag-Leffler function ElðzÞ can be considered as fractional generalization of the well
known exponential function expðzÞ. It is easy to see that at l ¼ 1 the Mittag-Leffler function ElðzÞ
becomes the exponential function, E1ðzÞ ¼ ez, and Eq. (23) is transformed into Eq. (13) for the
generation function of the standard Poisson random process. The parameter m becomes n at l ¼ 1.
Expanding (23) in series over s results in accordance with definition (21)
Plðn; tÞ ¼
ðmtlÞn

n!

X1
k¼0

ðk þ nÞ!
k!

ð�mtlÞk

Cðlðk þ nÞ þ 1ÞÞ ; 0 < l6 1: ð25Þ
he basic formulas on fractional calculus can be found in Refs. [2,3,10–12].
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The Plðn; tÞ gives us the probability that in the time interval ½0; t� we observe n events. When
l ¼ 1 the Plðn; tÞ is transformed to the standard Poisson distribution, see Eq. (14). Thus, Eq. (25)
can be considered as fractional generalization of the standard Poisson distribution. The presence
of additional parameter l brings new features in comparison with the standard Poisson distri-
bution. We investigate them in Sections 3.2–3.4.
Let us show that Plðn; tÞ satisfies the normalizing condition

P1
n¼0 Plðn; tÞ ¼ 1. Indeed, one can

see that the chain of equations holds
X1
n¼0

Plðn; tÞ ¼
X1
n¼0

ðmtlÞn

n!

X1
k¼0

ðk þ nÞ!
k!

ð�mtlÞk

Cðlðk þ nÞ þ 1ÞÞ ¼
X1
n¼0

ðmtlÞn

n!

X1
k¼n

k!
ðk � nÞ!

ð�mtlÞk�n

Cðlk þ 1Þ

¼
X1
k¼0

k!
Cðlk þ 1Þ

Xk
n¼0

ðmtlÞnð�mtlÞk�n

n!ðk � nÞ! ¼
X1
k¼0

ðmtlÞkð1� 1Þk

Cðlk þ 1Þ ¼ 1

Cð1Þ ¼ 1:
3.2. Mean and variance

The mean nl of the fractional Poisson process can be calculated straightforwardly
nl ¼
X1
n¼0

nPlðn; tÞ ¼
mtl

Cðl þ 1Þ : ð26Þ
The second order moment n2l is given by
n2l ¼
X1
n¼0

n2Plðn; tÞ ¼ nl þ n2l

ffiffiffi
p

p
Cðl þ 1Þ

22l�1Cðl þ 1
2
Þ : ð27Þ
Then variance of the fractional Poisson process is
rl ¼ n2l � n2l ¼ nl þ n2l
lB l; 1

2

� �
22l�1

�
� 1

�
; ð28Þ
where Bðl; 1
2
Þ is the Beta-function defined as [14]
Bðl; mÞ ¼ CðlÞCðmÞ
Cðl þ mÞ :
It is easy to see that at l ¼ 1 Eq. (28) is transformed to
r1 ¼ n1 ¼ nt; ð29Þ
here n is the rate of the standard Poisson process. The Eq. (29) express the well known property
that variance of the standard Poisson process is equal to its mean [4].
Finally note, that the probability distribution of the fractional Poisson process can be repre-

sented in the terms of the Mittag-Leffler function ElðzÞ by the following compact way:
Plðn; tÞ ¼
ð�zÞn

n!
dn

dzn
ElðzÞ

����
z¼�mtl

ð30Þ

Plðn ¼ 0; tÞ ¼ Elð�mtlÞ: ð31Þ
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At l ¼ 1 Eqs. (30) and (31) are transformed to the well known equations for the standard Poisson
process with the substitution m ! n.

3.3. Moment generation function

The equation for the moment of any integer order of the fractional Poisson can be easily found
by means of the moment generation function Hlðs; tÞ which is defined as
Hlðs; tÞ ¼
X1
n¼0

e�snPlðn; tÞ: ð32Þ
Indeed, for the moment of kth order we have
nkl ¼ ð�1Þk o
kHlðs; tÞ
osk

����
s¼0

: ð33Þ
By multiplying Eq. (19) by e�sn, summing over n as a result we find the following fractional
differential equation for the moment generating function Hlðs; tÞ:
0Dl
t Hlðs; tÞ ¼ m

X1
n¼0

e�snPlðn
 

� 1; tÞ �
X1
n¼0

e�snPlðn; tÞ
!

þ t�l

Cð1� lÞ

¼ mðe�s � 1ÞHlðs; tÞ þ
t�l

Cð1� lÞ : ð34Þ
The solution can be written as
Hlðs; tÞ ¼ Elðmtlðe�s � 1ÞÞ; ð35Þ

or in a series form
Hlðs; tÞ ¼
X1
m¼0

1

Cðml þ 1Þ mtlðe�sð � 1ÞÞm;
where the definition (24) of the Mittag-Leffler function was taken into account. Let us calculate,
for example, the first order moment. We write
nl ¼ � oHlðs; tÞ
os

����
s¼0

¼
X1
m¼1

mðmtlÞm

Cðml þ 1Þ ðe
�s � 1Þm�1e�s

�����
s¼0

¼ mtl

Cðl þ 1Þ ;
where we use the fact that the term m ¼ 1 only contributes to sum over m.
At l ¼ 1 Eq. (35) is transformed into well known equation for the moment generation function

of the standard Poisson. Indeed, if we note that E1ðzÞ ¼ ez, then we find the well known expression
H1ðs; tÞ ¼ E1ðntðe�s � 1ÞÞ ¼ expfntðe�s � 1Þg � Hðs; tÞ:
3.4. Waiting time distribution for fractional Poisson process

We introduce waiting time probability distribution function wlðsÞ of the fractional Poisson
process by the way
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wlðsÞ ¼ � d

ds
PlðsÞ; ð36Þ
where PlðsÞ is the probability that a given interarrival time is greater or equal to s
PlðsÞ ¼ 1�
X1
n¼1

Plðn; sÞ ¼ Elð�mslÞ; ð37Þ
and Plðn; sÞ is given by Eq. (25). From Eqs. (36) and (37) we obtain
wlðsÞ ¼ msl�1El;lð�mslÞ; tP 0; 0 < l6 1; ð38Þ
where the generalized two-parameter Mittag-Leffler function is [14]
Ea;bðzÞ ¼
X1
m¼0

zm

Cðamþ bÞ ; Ea;1ðzÞ ¼ EaðzÞ: ð39Þ
The wlðsÞ defined by Eq. (38) is fractional generalization of the well known exponential
probability distribution function wðsÞ given by Eq. (18) to which it reduces for l ¼ 1 because of
E1;1ðzÞ ¼ ez.
It occurs to be possible to obtain an explicit form of the fractional waiting time probability

distribution function w1=2ðsÞ at l ¼ 1=2. In fact in accordance with definition (39) we have
E1
2
;1
2
ð�zÞ ¼

X1
m¼0

ð�zÞm

C m
2
þ 1

2

� � ¼ 1

C 1
2

� �þX1
k¼0

ð�zÞkþ1

C k
2
þ 1

� � ¼ 1ffiffiffi
p

p � zE1
2
ð�zÞ: ð40Þ
Further, the Mittag-Leffler function E1
2
ð�zÞ has the representation [14]
E1
2
ð�zÞ ¼ ez

2

erfcðzÞ; ð41Þ
where
erfcðzÞ ¼ 2ffiffiffi
p

p
Z 1

z
dy e�y2 ð42Þ
is the complementary error function.
Substituting Eqs. (41) and (42) into Eq. (40) and then putting Eq. (40) with z ¼ msl into (38)

give the representation for fractional waiting time probability distribution function w1=2ðsÞ
w1=2ðsÞ ¼
mffiffiffiffiffi
ps

p � 2m2em2sffiffiffi
p

p
Z 1

m
ffiffi
s

p dy e�y2 : ð43Þ
The probability distribution function wlðsÞ has the following asymptotic behavior
wlðsÞ ’
1=mslþ1; s ! 1;
msl�1; s ! 0:

���� ð44Þ
The power law asymptotic behavior is observed in probability distribution of duration of the
Internet sessions at s ! 1 [5].



Fig. 1. The probability distribution functions wðsÞ and wlðsÞ defined by Eqs. (18) and (38) reciprocally and evaluated at
n ¼ 1, m ¼ 1, l ¼ 0:7.
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At last if we note that there exists the formula
Z 1

0

dt e�utta�1Ea;að�taÞ ¼ 1

1þ ua
; ð45Þ
then we easy get the Laplace transform wlðuÞ of the fractional waiting time distribution function
(38)
wlðuÞ ¼
Z 1

0

dse�uswlðsÞ ¼ m
Z 1

0

dse�ussl�1El;lð�mslÞ ¼ m
m þ ul

; 0 < l6 1 ð46Þ
which was originally proposed for m ¼ 1 in [3], see Eq. (7.5) as fractional generalization of the
Laplace transform of the exponential distribution wðuÞ ¼ m=ðm þ uÞ. Applying the inverse Laplace
transform
wlðsÞ ¼
1

2pi

Z rþi1

r�i1
dueuswlðuÞ;
yields at m ¼ 1 Eq. (3) which coincides with Eq. (7.6) in [3].
Fig. 1 shows the plot of the probability distribution functions wðsÞ and wlðsÞ.
4. Fractional compound Poisson process

We call stochastic process {X ðtÞ, tP 0} a fractional compound Poisson process if it is repre-
sented by
X ðtÞ ¼
XNðtÞ

i¼1
Yi; ð47Þ
where {NðtÞ, tP 0} is a fractional Poisson process, and {Yi, i ¼ 1; 2; . . .} is a family of independent
and identically distributed random variables with probability distribution function pðY Þ for each
Yi. The process {NðtÞ, tP 0} and the sequence {Yi, i ¼ 1; 2; . . .} are assumed to be independent.
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We now calculate the moment generation function Jlðs; tÞ of fractional compound Poisson
process
Jlðs; tÞ ¼ hexpfsX ðtÞgiYi;NðtÞ; ð48Þ
where h. . .iYi;NðtÞ is averaging procedure which includes two statistically independent averaging
procedures:

1. Averaging over independent random variables Yi, h. . .iYi
h. . .iYi ¼
Z

dY1 . . .dYn pðY1Þ . . . pðYnÞ . . . ; ð49Þ
where pðYiÞ is the probability density of random variable Yi.
2. Averaging over random number n governed by the fractional Poisson process
h. . .iNðtÞ ¼
X1
n¼0

Plðn; tÞ . . . ; ð50Þ
where Plðn; tÞ is given by Eq. (25).

One can see from Eq. (48) that kth order moment is obtained by differentiating Jlðs; tÞ k times
with respect to s, then putting s ¼ 0, that is
hX kðtÞiYi;NðtÞ ¼
ok

osk
Jlðs; tÞ

����
s¼0

: ð51Þ
To obtain equation for the moment generation function Jlðs; tÞ we apply Eqs. (49) and (50)
to Eq. (48)
Jlðs; tÞ ¼
X1
n¼0

hexpfsX ðtÞjNðtÞ ¼ ngiYiPlðn; tÞ

¼
X1
n¼0

hexpfsðY1 þ . . .þ YnÞgiYi �
ðmtlÞn

n!

X1
k¼0

ðk þ nÞ!
k!

ð�mtlÞk

Cðlðk þ nÞ þ 1ÞÞ

¼
X1
n¼0

hexpfsðY1ÞginYi �
ðmtlÞn

n!

X1
k¼0

ðk þ nÞ!
k!

ð�mtlÞk

Cðlðk þ nÞ þ 1ÞÞ ; ð52Þ
where we used the independence of fY1; Y2; . . .g and NðtÞ and the independence of the Yi�s between
themselves. Hence, letting
gðsÞ ¼ hesY iY ð53Þ

for the moment generation function of random variables Yi, we find from Eq. (52) the moment
generation function Jlðs; tÞ of the fractional compound Poisson process
Jlðs; tÞ ¼
X1
n¼0

gnðsÞ � ðmtlÞn

n!

X1
k¼0

ðk þ nÞ!
k!

ð�mtlÞk

Cðlðk þ nÞ þ 1ÞÞ ¼ ElðmtlðgðsÞ � 1ÞÞ: ð54Þ
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Upon differentiation of the above, it easy follows, for example, that the mean of the fractional
compound Poisson process is
hX ðtÞiYi;NðtÞ ¼
o

os
Jlðs; tÞ

����
s¼0

¼ hY iY
mtl

Cðl þ 1Þ ; ð55Þ
which is manifestation of independency of fractional Poisson process and random variables Yi.
5. Conclusions

To explain empirically observed power law asymptotic behavior of probability distribution
function of interarrival times we propose non-Markov fractional Poisson model based on frac-
tional generalization of the Kolmogorov–Feller equation. We obtain analytical expression for the
probability Plðn; tÞ (see Eq. (25)) that in the time interval ½0; t� we observe n events governed by
fractional Poisson stream with fractality parameter l, 0 < l6 1. The probability Plðn; tÞ is frac-
tional generalization of the well known Poisson probability and is transformed to it at l ¼ 1.
Because of property of the Mittag-Leffler function E1ðzÞ ¼ ez the Markov property of the stan-
dard Poisson process is reconstructed at l ¼ 1. Thus, all new general equations developed in the
paper in the limit case l ¼ 1 are transformed into the well known equations concerned the
standard Poisson random process.
One of an important feature of a counting random process is statistics of its interarrival times.

It is well known that the Poisson model predicts the exponential probability distribution of in-
terarrival times. The developed fractional Poisson model predicts power law behavior of inter-
arrival times probability distribution (see Eqs. (38) and (44)). The network communication traffic
is an example of counting process with power law asymptotics of interarrival time distribution.
Thus, the fractional Poisson process can be applied to statistical analysis data collected from
different network communication systems.
To show how one can work with the fractional Poisson process we define the fractional

compound Poisson process and obtain analytical expression for its moment generation function.
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