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Abstract

Consider the fractional ARIMA time series with innovations that have infinite variance. This
is a finite parameter model which exhibits both long-range dependence (long memory) and high
variability. We prove the consistency of an estimator of the unknown parameters which is based
on the periodogram and derive its asymptotic distribution. This shows that the results of Mikosch,
Gadrich, Kliippelberg and Adler (1995) for ARMA time series remain valid for fractional ARIMA
with long-range dependence. We also extend the limit theorem for sample autocovariances of in-
finite variance moving averages developed in Davis and Resnick (1985) to moving averages whose
coefficients are not absolutely summapble.

1 Introduction and main results

This paper is concerned with the estimation of the parameters of the fractional ARIMA time series
{Xn} defined by the equations
(1.1) ®(B)X, = O(B)A™Z,,

where the innovations Z,, have infinite variance and where d is a positive fractional number. B and A
denote the backward and differencing operator respectively. Because of the presence of the fractional
d, the times series (1.1) has not only infinite variance but also exhibits long-range dependence (long
memory). For more details, see Samorodnitsky and Taqqu (1994), Kokoszka and Taqqu (1995a) and
(19950).

Our goal is to estimate both d and the coefficients of the polynomials ® and ©, by using a variant
of Whittle’s method. For a stationary Gaussian time series with spectral density g(X, 8), —m < A < m,
Whittle’s method, which provides an estimate of (3, requires replacing the inverse covariance matrix
that appears in the Gaussian likelihood by a Toeplitz (covariance) matrix with spectral density 1/g
and then maximizing the quadratic form. Hannan (1973) applied Whittle’s method to finite variance
ARMA time series, that is to (1.1) with d = 0. He proved that the estimator is consistent and
asymptotically normal. An ARMA time series, however, has short range dependence because the
correlations decrease exponentially fast. Fox and Taqqu (1986) extended this result to Gaussian time
series with long-range dependence such as fractional Gaussian noise or fractional ARIMA by appealing
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to a central limit theorem for weighted quadratic forms whose weights are chosen in such a way as
to compensate for the long-range dependence. Fox and Taqqu’s result, which was later generalized
to the full maximum likelihood by Dahlhaus (1989), is the basis of one of the most commonly used
techniques for estimating the intensity of long-range dependence in Gaussian time series (see Beran
(1994)). Giraitis and Surgailis (1990) extended Fox and Taqqu’s result to finite variance innovations
without Gaussian assumptions and Heyde and Gay (1993) to random fields.

When the innovations are in the domain of attraction of an infinite variance stable random variable,
covariances stop making sense. One can, however, still use the same estimator as in the Gaussian case.
Doing so has the advantage of not having to determine beforehand the often unknown distributions
of the innovations. It is necessary, however, to verify that these estimators have good properties in
the infinite variance case as well. Mikosch, Gadrich, Kliippelberg and Adler (1995) showed that this
is the case for ARMA time series. In this paper we extend the result of Mikosch et al. to fractional
ARIMA time series which have long-range dependence. We prove that the estimator is consistent and
determine its asymptotic distribution. Because of the slow decay of the coefficients in the fractional
ARIMA time series, very few of the technical arguments used by Mikosch et al. (1995) carry over to
our setting and hence significantly different proofs of the basic lemmas had to be developed.

Assume then that the innovations Z, in (1.1) are i.i.d. with mean zero and are in the domain of
attraction of an a-stable law with 1 < a < 2, i.e.

(1.2) P(|Zy| > z) =27 *L(z), as z — oo,
where L is a slowly varying function, and
(1.3) P(Z, > z)/P(|Z,| > z) = a, P(Z, < —z)/P(|Z,| > z) = b,

where a and b are nonnegative numbers satisfying a + b = 1. It has been shown in Kokoszka (1995)
(and Kokoszka and Taqqu (1995a) in the case of stable innovations) that for the Z, as above, there is
a unique moving average

o0
(1.4) Xn = Z CjZn—j
=0

satisfying Equations (1.1), provided that the polynomials ® and © have no zeros in the closed unit
disk D = {z:]2| < 1} and no zeros in common and that d < 1 — 1. (This is why we suppose a greater

=
than 1.) The coefficients ¢; in (1.4) are defined by

> - O(z)
1.5 cizl=———— |z 1,
( ) ]go J (I>(z)(1 —z)d | | <

and are asymptotically proportional to j4~! as j — co. Therefore they do not satisfy the fundamental
assumption

o0
(1.6) Zj|cj|1/\“ < oo forsome 0 <y <
j=0

of Mikosch et al. (1995). The fact that the ¢;’s are not absolutely summable turns out to be a major
source of difficulties.



We want to estimate the (p + ¢ + 1)-dimensional vector

ﬂO = (d’la"'aqspaela"'agqad)

where ¢1,...,¢, and 61,...,0, are the coefficients of the autoregressive polynomial ®(z) =1 — ¢z —

.. — ¢p2zP and the moving average polynomial ©(z) = 1+ 612z + ... + 0,27 respectively, and d is the
differencing parameter in (1.1). We assume that the true value of d is positive and hence lies in the open
interval (0,1 — ) In the case of Gaussian innovations, positive d corresponds to a spectral density
that diverges at zero (1/f noise). The preceding discussion motivates the choice of our parameter space
FE, namely a compact set contained in

{(¢1, e p,01,...,00,d) 1 dp #0, 3 #0, ®(z) and O(z) have no common zeros,
1
(0] fi <1 1——)5%.
(2)0(2) #0 for |2] <1, d € (0, a)}

We introduce now some additional notation which will be used throughout the paper. The time
series (1.4), called fractional ARIMA, will be referred to as FARIMA(p,d,q). The elements of E
are denoted [, possibly with some sub- and/or superscripts. The last coordinate of the vector
is the difference parameter d. The true value of the parameter vector is denoted [y. The sample
autocovariance and autocorrelation functions are defined respectively by

n—|h|
1
(1.7) Yn(h) Z Xt Xty n)
t=1
and
n n—|h|
(1.8) p(h) = Q- XP)TH( D XieXepn) = (1(0) "y (B).
t=1 t=1
We will frequently use the corresponding deterministic quantities
o
(1.9) v(h) =D cicivn s p(R) = (v(0) "y (h).
=0
The normalized periodogram is defined as follows:
(1.10) ZXt ) ZX e MP =3 pa(h)e ™, —r <A<
|h|<n

For B € E, the power transfer function is

2 o0

Z —z',\j|2_

SIC)

(1.11) g()\aﬁ) = ‘ ( A ,3)(1 — e i d(ﬁ

Following Fox and Taqqu (1986) who consider Gaussian fractional ARIMA and Mikosch et al. (1995)
who study infinite variance ARMA processes, we define the estimator (3, based on the sample
Xi,...,X, as the value of § minimizing

(1.12) o= [ gf(,\“;)

Notice that under our assumptions, the function 1/¢(-,-) is continuous on [—m, 7] X E, and hence, in
particular, the integral in (1.12) is well-defined. The following consistency result holds:

d\, B€EE.



Theorem 1.1 If By is the true parameter and By, is the value of B minimizing o2(8), then

(1.13) B 5 Bo

and 9
2 P

(1.14) o:(Bn) = —7(0).

This theorem is proved in Section 2.2. As part of the proof, we extend the limit theorem for sample
autocovariances of infinite variance moving averages developed in Davis and Resnick (1985) to moving
averages whose coefficients are not absolutely summable.

We now turn to the asymptotic distribution of the estimator J,. Theorem 1.2 below, which
generalizes Theorem 2.2 of Mikosch et al. (1995) and which is an infinite variance analog of Theorem
2 of Fox and Taqqu (1986), is valid under a more restrictive assumption on the innovations Z,,. We
now assume that the Z, are symmetric and are in the domain of normal attraction of a SaS law i.e.

n
(1.15) n 23" z; By,
7j=1

where Eexp(i0Y) = exp{—0%|0|*}. Relation (1.15) is equivalent to (see e.g. Gnedenko and Kol-
mogorov (1954))

o o
(1.16) lim A*P(Z < —X) = Cao and lim A\*P(Z > \) = Cao ,
A—00 A—o0 2
where ~ .
00 dz \ " T@—a)costrarz) Ta# L,
(1.17) Ca = (a/o (]_ — COS CC) W) =
2/m ifa=1

We make these additional assumptions on the Z,, because our proofs depend heavily on the results of
Rosinski and Woyczynski (1987) which require that the Z,, (the X; in their paper) be symmetric and
satisfy lim supy_, ., A*P(|Z,| > A) < C < 0.

In order to state our result we introduce the (p + g + 1) x (p + ¢ + 1) matrix W () with entries

2

1.18 = g Be) =g (A Bo)dN, dj = 1,... 1

( ) W5 [ﬂg( ”60)8,618,3]9 ( 5/80) » 6] ; ,p+qg+1,

and the (p + ¢ + 1)-dimensional vectors by, k € Z, whose jth coordinate is

(1.19) )i = 5 | &M g00 o) ppg A B)A, G =1 p gt
. k)] 21 ) 3 08,6] s M0 ) IR .

The following theorem shows that, as in the Gaussian case, the asymptotic result for d = 0 extends
to d > 0.

Theorem 1.2 If the innovations Z, are symmetric and satisfy

(1.20) lim A*P(|Z] > \) = Cao®,
A—o0

4



then

(1.21) ( " )Ua(ﬁ Bo) B 4 W‘l(ﬁ)iy’“b
. — T —
logn n 0 0 ~ YO ks
where Yy is positive §-stable with scale parameter C’;/Qz/a and the Y, k> 1 are i.i.d. SaS with scale
parameter C’;l/a. The random variables Yy,Y1,Ya, ... are independent and Cy is given in (1.17).
Setting ¢, = 47W~'(By)b, observe that the j** coordinate of the limiting random vector

3 ex Y/ Y, is distributed as (352 ; |(cx)]%)Y/ Y1/ Yo, that is, as the ratio of two independent stable
random variables. Observe also that the result is similar to the one in the ARMA case (see Theorem
2.2 in Mikosch et al. (1995). In that theorem, the scale parameter of Yy, k& > 1, should be Cx'/® and
not Ca/%).

Theorem 1.2 is a first step in the development of statistical procedures for time series that exhibit
both infinite variance and long-range dependence. Its proof is presented in Section 3. In Section 4 we
describe the results of a small simulation study.

2 Consistency of the estimator

The proof of the Consistency Theorem 1.1, which is presented in Section 2.1 below, follows in its main

outline that of Theorem 2.1 of Mikosch et al. (1995). In our case, however, the power transfer function

g(, Bo) diverges to infinity at A = 0, so the arguments developed for continuous g do not carry over.

By working with the compact parameter space E, we are able to avoid some technical complications.
We first establish the following extention of Theorem 4.2 of Davis and Resnick (1985).

Theorem 2.1 Suppose the innovations Z, have mean zero and satisfy (1.2) and (1.3) and

oo

(2.1) > lej|*T < o0

J=0

for some € > 0. Then, for the moving average
o
X, = Z ¢jZn—j,
j=0

we have
n—|h| > 00

(2.2) G;Q Z XtXt—|—|h\a ‘h| <m] — (Z Cjcj_|_|h‘)Y0, ‘h| <m|,
t=1 j=0

where Yy is as in Theorem 1.2 and the a, are determined by the condition
(2.3) Vz >0 nlggo nP(|Z1| > apz) =2~

Observe that in Theorem 2.1 we do not assume the absolute summability of the ¢; if & > 1, which
was a global assumption in the paper of Davis and Resnick (1985). A careful study of their proofs
shows that the result depends on the relation:

PUERociZi| > 1) _ &
2.4 li 1= =3 Jej|?
&0 (AR P YL




and on Condition (2.1), which guarantees that the process X,, is well-defined (see e.g. Avram and
Taqqu (1986)). Relation (2.4) was proved by Cline (1983) under the assumption that 3522 [c;| < oo, if
a > 1. Because the coefficients ¢; in the moving average representation of fractional ARIMA processes
behave like j4~! as j — oo, they are not absolutely summable if d > 0, and hence we cannot use Cline’s
result here. We will show, however, that (2.4) continues to hold under Condition (2.1) if the Z; have
mean zero. As this fact is of central importance to the present paper and is also of independent interest
we formulate it as a separate theorem.

Theorem 2.2 Suppose 1 < a < 2 and the Z, have mean zero and satisfy (1.2) and (1.3). Then
Condition (2.1) implies Relation (2.4).

The preceding discussion and Theorem 2.2 imply Theorem 2.1.

The proof of Theorem 2.2 which utilizes the ideas of the proof of Lemma 4.2 of Resnick (1987) is
given below. (The theorem holds, with the same proof, for two-sided moving averages.)

2.1 Proof of Theorem 2.2

We start by describing the basic idea. While our argument essentially follows the one presented in
Resnick (1987) pp. 228-230, the crucial difference is that in order to find an effective upper bound for

P13 ¢jZil) 7, <ale; 1| > =),
J

we use the Chebyshev Inequality rather than the Markov Inequality. This makes it unnecessary to
use Jensen’s inequality to reduce the case a > 1 to the case a < 1, a procedure which required the
assumption }-; [c;j| < oo (35; stands for 3222 or 3°72 ). Observe first that

(25) P(1Y_¢;Z| >2) = P()cjZ|> =, suplc;Zj| > z) + P(|D_ ¢;Z;| > x, sup|c;jZ;| < z)
j j j j j

P((HlejZj| > «}) + P(1Y_ ¢jZjlye, z,)<a)] > )
j j

Y P(1Zj] > zlej| ™) + & Bl Y ¢iZ1 7, 1<0le; -1
j 7

IN

IN

We first verify that the series }°; Y}, Y; = ¢;Z;1|;7;<4) converges in L?. Observe that the Y; need
not be orthogonal. It suffices to show that 3, |EY;| < oo and 3, E|Y; — EY;|?> < co. In the arguments
below we often use Potter’s theorem (see Theorem 1.5.6(c) of Bingham et al. (1987)). Since EZ; = 0,
we have for sufficiently large j.

(2.6) \EY;| = |E{cjZjl|c;z;|>2}|
< / P(le; Z;| >:1:)dt+/ P(l¢;2;| > t)dt
0 x
o0
< z(1 +6)$_a+6|0j|a_6 +(1+ 6)|Cj\a_€/ tmotedt
QA — € _ _
= (+e—g— _611 2+l



which shows that the series °; EY; converges absolutely. Since 3; E|Y; — EY; |2 < > EYJ?, it remains
to verify that Zj EYj2 < 00. It follows from the well-known relation

BE[Z31]2,1<4] L, @

27 2?P(|Z1| >z)  2—«

(see Section 8.1 of Bingham et al. (1987)) that the function U(z):= E[|Z1]*1}z,|<4] is regularly
varying with index 2 — «, and, consequently, for sufficiently large z and some constant K,

2
(2.8) E—YJQ _ ‘C,|2E[Z11[|Z1|Sw\c]‘\_1]]
' 2P(Z >0 9 T 2Pz > @)

:| ,|2U(‘T|Cj|_1) U("E)
J U(z) x%2P(|Z1] > z)

Since E| Y, Y;|* = Var(X Y)) + (EXY;)? < X, EY} + (X, |[EYj|)?, we obtain from (2.5), (2.6) and
(2.8),

< Kl (le| 7?04 = Kej|* .

P(| X ¢iZj| > z)

(2.9) P(|Z1‘ > .’II) S Sl(.’L‘) + SQ(JI) + 53(.’1,‘),
where
P(|Z:] > || ) _ EY} (X 1EY;)?
KR T B R T N D)

Since P(|Z1| > x) is regularly varying at infinity with index —a, for sufficiently large j the summands
in the sum defining S1(z) do not exceed (1 + €)|c;|*7¢, and so lim; 0 S1(7) = 30;[c;|* By (2.7),
(2.8) and the Dominated Convergence Theorem, lim; ;o S2(7) = 525 35, [cj|*. Finally, by (2.6),
S3(z) < c(a,e)(X; |cj|27€) 2z F€. The inequality (2.9) and these relations yield

P ciZi| >
(2.10) lim sup (|ZJCJ | > ) 2

|
oo P(|Z1] > z) —2—azj:|cf|'

Now, for any 0 < r < 1 and any positive integer m,

ZCJZ\>:E)>P|ZC]Z\>(1+T P(l Y ¢jZj| > ra).
lil<m li[>m

Since the hypothesis of the theorem holds for finite sums (see Proposition on p. 278 of Feller (1971)),
(2.10) yields

P13, ¢iZjl > =)

(2.11) lim inf >(14r)¢ Z lej|® — ——— Z lcj]*.
oo P(|Z1| > x) Jem (2 —a)re o
Similarly,
P, e%| > @) _
(2.12) lim sup J le;|* + e;|®
e P(l2] > o) J|z<:m ’ @-ajre a) Ing ’

Letting first m — oo and then r — 0 in (2.11) and (2.12), we get (2.4). 1



2.2 Proof of the Consistency Theorem 1.1

The proof of Theorem 1.1 uses two lemmas. The first extends Proposition 10.8.1 of Brockwell and
Davis (1991); the second extends Lemma 1 of Fox and Taqqu (1986) and Lemma 6.1 of Mikosch et al.
(1995).

Lemma 2.1 Suppose (1,02 € E. If 81 # (a2, then

1 i g(>‘a/81)
(2.13) - /_W >
PROOF: For |z] <1 and 8 € E define
_ O(z,h) %
D= G- J-Z:O o

H(zf) = 1/C(z, B) :i

Let {e,} be a sequence of i.i.d. N(0,1) random variables and consider the Gaussian fractional ARIMA
process

Xn(61) = Z (B1)en— —j-
It is well known (see e.g. Brockwell and Davis (1991) §13.2) that Var(X,41(681) — 2520 wj Xn—5(61))
is minimized if and only if u; = —h;11(81) and the minimum value of the variance is 1. Since 35 # i,

we have H(-, 82) # H(:,51), and so Var(Xp+1(61) + 2°52¢ hj+1(82) Xn—;(61)) > 1. This concludes the
proof because that variance equals

o0

> th B2)cj—k(B1)

7j=0'k
1 ™
_E/_W

Remark. The lemma holds whenever |d| < %, thus not only for positive values of d. Indeed, since

for d < %, C(e™*,B) € L*[—n,x] and for d > —%,H(e‘i',,@) € L%[r, 7], Parseval’s relation applies

whenever |d| < 1/2.

2 1 gym . )
= %/_ [H(e™™, 82)C(e™™, B1)[dA

C(eiiAa /81)
Cle ™, Ba)

2 _ 1 4 g(>‘7/61)
d)\_%/_ﬂ A

Lemma 2.2 Let f(A, ) be any continuous (and hence uniformly continuous) function on [—m, 7| X E.
Then, as n — oo,

& P
(2.14) sup \ [ son, ‘”‘W " 10,990 o) Lo,



PrROOF: The proof is similar to the proof of Lemma 6.1 of Mikosch et al. (1995). Note, however,
that for fractional ARIMA processes the function g(A, Gy) diverges at A = 0.

Let K,,(e") = 2ih<em(l — %)ei)‘h denote the Fejér kernel. Fix € > 0 and choose m so large that
for all A and g,

(2.15) Ko x FO0,B) = FLB)| < o

(To verify (2.15), repeat the proof of Fejér’'s theorem for continuous functions and use the uniform
continuity of f in both variables.) Hence, for any £,

‘/_Zf()\,ﬂ)fn()\)d/\— :TKm*f(A,ﬂ) NdA < /_W

Consequently,
(2.16) (Sup ‘/ FOL B (A)dA — 4(0)™ 1/7;f(A,ﬂ)g(/\,ﬁo)d>\‘z e)
<P <sgp [ Kt 10T =90 [ 10,00 Po)ir|> 5)
=P (s%p 2 }Em( 1), Bon () —0) [ Zf(/\,ﬁ)g(/\,ﬂo)d/\‘z g) :

where p,(h) is given in (1.8) and f(h,3) = o [T e A f(X, B)dA. The last quantity in (2.16) is
bounded above by

(2.17) P | sup
g
+P | sup
B
The first term in (2.17) tends to zero because, by Theorem 2.1, p,(h) 3 p(h) and |f(h,B)| <
SUP_ < x<r SUPger | f (A, B)| < 0o. To evaluate the second term in (2.17) observe that

2 3 (on(h) - o) (1- 1) f, ﬁ)\zg)

|h|<m

2 3 o) (1= B0 i) =207 |7 500890 B>

|h|<m

»Jklm

2 3 o~ i gy =0 [ [z v(h)(l—%wl FO, Bdx
|h|<m T Lpl<m
and h
Z ’7 | e = Ky, * g(/\,,B())-
|h|<m

Therefore the second term in (2.17) equals

P (s%p O™ [ 1K+ g0 o) = 90 fo)] FON B 2 g) ,



which is zero for sufficiently large m because f(\, ) is uniformly bounded on [—m, 7| X E and, by
Fejér’s theorem (see e.g. Helson (1983) p. 14),

m
[ 1K= 90 ) = g0, o)l — 0, as m — oo,
()

since g(-,8y) € L'[—m, n]. This concludes the proof. N

PROOF OF THE CONSISTENCY THEOREM 1.1: Since d(8) > 0, the function 1/g(\, ) is continuous
on [—m, ] X E, and hence Lemma 2.2 applies. We get

(2.18) Ug:/:; ;?/{A_))d/\ B2 1 " g\ fo)

7(0) J-x g(A,-)
where 02 and ¢? are random elements of the function space C(E) of continuous functions on E

equipped with the sup-norm. The remainder of the proof, included for completeness, is a variation on
the proof of Theorem 2.1 of Mikosch et al. (1995).

Since [y is a constant, to prove (1.13) it suffices to show that S, z Bo. As E is compact, the

d,

sequence {f,} is tight, and hence 3, z Bo if and only if every weakly convergent subsequence of {£,}
converges weakly to [y.

Let then {f,,} be a subsequence of {3,} such that 3, B g (8 is a random variable). We want
to show that 8’ = (3, a.s.
By (2.18) and Theorem 4.4 of Billingsley (1968),

(2.19) (07:Bm) B (6%, 8) (in C(E) x B),
since o2 is a non-random element in C(E). By the Continuous Mapping Theorem, (2.19) implies
(2.20) 02, (Bm) B 2(8).
and hence, for any t,
(2:21) limsup P(07,(Bm) < t) < P(c?(8') < 1)
m
Now, the definition of £, and (2.18) yield
2 2 L 2
0 (Bm) L 05,(Bo) = toi= —.
Consequently,
(2.22) lim inf P07, (Bm) < t) > liminf P(o7,(fo) <) 21, ¥t > to,

and so limsup,, P(02,(8n) <t) =1 for all t > t5. Using (2.21) we obtain
(2.23) P(*(B)<t)=1, Vt>t.
Moreover, by Lemma 2.1, 02(8') > to, whenever 3’ # [y, and so

(2.24) lim P{o*(8) <t, B' # bo} = P{o*(8') < to, B # fio} = 0.

10



The equality (2.23) implies that for any t > to,

1 = P*B) <t B =p)+P*B)<t, B #b)
< P(B =p)+P(*(B) <t, B # ),

which together with (2.24) yields P(8' = () = 1. This is what we wanted to establish.
Finally, to prove (1.14), write

(2:25)  P(lo7(Bn) — 0*(Bo)| 2 €) < P(loz(Ba) — 0*(Ba)| = €/2) + P(lo*(Bn) — 0*(Bo)| = €/2).

The first term in the right-hand side of (2.25) tends to zero by (2.18), the second because 3, Ei Bo
and o? is continuous on E. N

3 Asymptotic distribution of the estimator

The crucial element in the proof of Theorem 1.2 is Proposition 3.1 below, which is established in
Section 3.2. We show first that this proposition yields Theorem 1.2.

Proposition 3.1 For real numbers uy,us, ..., uUptq+1 (which are fized but arbitrary) set
pt+g+1 a
(3.1) u; (A, Bo)-
Z J (9,3]

Then, as n — oo,

(32 ()" [ R 2 % > 5k (7 [ o0 samvar)

where the random wvariables Yy,Y1,Yo are as in Theorem 1.2.

PROOF OF THEOREM 1.2: Let % denote the column vector with entries a%j, j=1,....,p+qg+1and

63—52 the matrix with entries %{;ﬂj, i,7=1,...,p+ q+ 1. Relation (3.2) implies

n \/ 3 47r > Y
(cf. (1.12)). Also, ) X
0 o 0°
(3.49) o) = [ LN O Aoy

Differentiation under the integral in (3.3) and (3.4) is justified because the function g(A, ) is pro-
portional to the spectral density of Gaussian fractional ARIMA and consequently satisfies Condition
(A3) on p. 521 of Fox and Taqqu (1986), namely, for any § > 0 there are constants K;(4) and K2(d)
such that

(3.5) ﬁ)\ﬂﬁ( HAPAO= 1 paq+l

(A
"

11



and

* 2d(B)-8 ; .
3.6 — g7 OB S Ko (B)APHO0 G i =1, p+q+1.
(3.6) 95,05, (X, B)|< Ka(8)|Al j p+q
Since E is compact, we can clearly assume that there is a § > 0 such that
3.7 inf (2d(8) — d6) > 0.
(3.7) Jnf (2d(B) - 0) >

Condition (3.7) together with (3.6) show that 6%/98%(g~ (), B)) has continuous components, and so,
by Lemma 2.2 and (3.4),

0? 1 P
(3.8) sup 8—52%(5) - WW(ﬂo) = 0.
Since 3, minimizes o2 (f), there is some 3} satisfying ||3% — Bol| < ||Bn — Bol| such that
0 0? .
(3.9) 357n(0) = — 5594 (81) (B — fo).

Multiplying both sides of (3.9) by (n/logn)Y® and using (3.3) and (3.8) together with Theorem 4.4
of Billingsley (1968), yields (1.21).

3.1 Tools

We state here several results on which we rely extensively.
The following proposition follows from Theorem 3.1 of Rosinski and Woyczynski (1987).

Proposition 3.2 Suppose Z1, Z,, ... is a sequence of i.i.d. symmetric random variables satisfying
(3.10) limsup A*P(|Z1] > A) < C < o0,
A—00

where 0 < a < 2. Consider the sequence of bilinear forms

n
(3.11) Qn = q4,k)Z;Z,
gimy

and set .
(3.12) NI =37 1a(G k)| (1 + logy [a(, k) ™).

gy
Then there is a constant D,, such that
(3.13) P(|Qu| > A) < DaA™%(1 + log, )N,
Moreover, if Ny = nli—{roloNO(‘n) < 00, then the sequence {Qn} converges in LP, for any 0 < p < a, to the
limit -
(3.14) Q= q(,k)Z;Z
which satisfies
(3.15) P(|Q| > X) < DoA™ %*(1 +1og, A)Na.

12



By log, x we mean logx if x > 1 and 0 otherwise. Combining this proposition with the inequality

1
(3.16) z*(1 +log, =) < (a—p)~'zH,

x
valid for l < p<aand 0 < z < 1, we get
Corollary 3.1 Suppose p is a real number. If for some 1 < u < a,

; Py (i )M —
nlggozl; [nPqn (5, B)|* =0,
jj?,ék
then
nP an(j, k‘)ZjZk E) 0 asn— oo.

ik
j#k
The next proposition is a direct consequence of Theorem 3.3 of Davis and Resnick (1986).

Proposition 3.3 Suppose the Z, and the Yy, k > 0 are as in Theorem 1.2. Then, for any m > 0, as
n — oo,

n n—1 n—m
(3.17) (n~2*>" 72, (nlogn)™V* > ZyZyyr,..., (nlogn) ™V Y Z1Zy )
t=1 t=1 t=1
2y (C¥0?) (Yy,Yi,. .., V).
We shall often use the following lemma.

Lemma 3.1 Suppose the c; are defined by (1.5). Then for 0 < |A\| < 7 and any integers ni < no

712
(3.18) > cje™N|< Kn{ ™!
Jj=n1
and "
2
(3.19) > cjeN|< KN
j=ni

where K does not depend on ni,n9 and .

PROOF: Inequality (3.18) follows immediately from the fact that lim;_,o, ¢;/j% * exists (cf. Bingham,

Goldie and Teugels (1987) p. 208). Inequality (3.19) can be proved by modifying slightly the proof of
Theorem 2.6 and using inequalities 2.26 and 2.27 on p. 191 of Zygmund (1979). N

3.2 Proof of Proposition 3.1
Proposition 3.1 follows from a number of lemmas which are proved below, some of which are of
independent interest.
Lemma 3.2 Consider the function n defined in Proposition 3.1 and set
x(A) = n(N)g(X, Bo)

and
1

— / e My (A)d.

fk:27r

Then fr, = O(|k|™!) as k — oo.

13



Proor: By (1.11),

p+g+1 -1
m)=<2w—£@§@m)

P+(I+1 —iA 2
N 0 (6 ! 7/80) —iA
= — Z u]aﬁ] {log B o) 2d(By) log |1 —e ™| 5.
Thus, we can write \
(3.20) X(A) = x1(A) + A(fo) log [2sin 7|,
where ot
p+q o ( —iA 50)
3.21 x1(A) = — uj = log :
( ) 1( ) ng Jaﬂj (6 Bo—ir 2 ,8())
and
p+g+1 a
. =2
(3.22) A(Bo) Z g ﬂ]

By (3.20), fr = fix + A(Bo) forx, where fij is the Fourier coefficient of x; and

1T
(3.23) m:%/eﬂ%g

A
2sin —|dA.
s1n2‘

As the function x; has continuous derivative on [—7, 7], we have fix = O(]k|~!) and so it remains to
show that for, = O(|k|™!). Integrating the right hand side of (3.23) by parts and setting A\ = 2u, we
get

7/2 gin(2ku) cos
(3.24) Fop = sin(2kp) cosp

7Tk sin

Consequently, we must show that the 1ntegrals

I /”/2 sin(jpr) cos pt
I Jo sin

are uniformly bounded in j. To verify this, decompose I; as I; = Ii; + I5;, where

7/2 gin(ju) cos
I, - / Up)cosp
0 Y

and

T2 1 1
I = / sin(ju) cos p ( — — —> dp.
0 sing W

14



Since |1/sinpu—1/p| = O(w), as g — 0, the sequence {I;} is bounded. To see that the sequence {Iy;}
is bounded, observe that

1 /2 gin(j + 1 /2 gin(j — 1
0 1 0 ©

/ﬂ/2 Sin(j'u)d,u _ /”j/2 Sinxdx IR /°° sin:vdx
0 W 0 x 0o ’

as j — 0o, the last integral converging conditionally. N

and

Lemma 3.2 is used in the proof of Proposition 3.4 below, in which fn,z()\) denotes the self-
normalized periodogram of the process {Z;}, i.e.

2

n -1 n
(3.25) Inz(\) = (Z Zf) > Zye WM
t=1 t=1

Proposition 3.4 Suppose the Z, and the Yy, k > 0, are as in Theorem 1.2 and the function x and
the sequence {fx} are as in Lemma 3.2. Then

/o pm v,
(3.26) ( n ) / In,Z(A)X(A)dA—%rkz:jl Tt

logn —
as n — oo.

PROOF: This proof follows closely that of Lemma 6.3 of Mikosch et al. (1995); we use here a > 1
and Lemma 3.2 rather than the assumption Y | fx|* < oo for some u € (0,1 A «), which holds in the
ARMA case.

By Theorem 4.2 of Billingsley (1968), Relation (3.26) will follow, once we have verified that, as
m — 00,

Yo, P — Y}
(3.27) 2 > S fp o 4wy = fr,
k| <m Yo i1 Y0
and, as n — oo,
n Vo pem ~ D Yk
. 2 —
(3.28) (& gn) [ fnzxm0ir B 2 ng v f

for each fixed m, where x,,(A) = > lkj<m fre™ . and

1/a
(3.29) lim limsupP{( - )

m—00 pn_soo ]og n _x

[ )6 = xmN)aA > } —0,

for any € > 0.
In order to verify (3.27) observe first that

(3.30) / " logg(\, B)dr =0, VA€ E.

15



Relation (3.30) follows from the remark on p. 520 of Fox and Taqqu (1986) and the fact that g(X,3) =
2w f (A, B), where f(), ) is the spectral density of the Gaussian fractional ARIMA. Using Condition
(A.1) of Fox and Taqqu (1986) with g in place of f, we get, by (3.30),

pt+q+l pt+q+1 9 1 -
fo= 2 wig, / og; 1089 (o)A = Z 58, ( 5 Ogg“’ﬂO)dk) 0
j=1

In view of the above relation and the fact that fp = f_j, it remains to show that
Yo, p

(3.31) Z —fr =0, as m — oc.
Yo

|k|>m

Since Y; is independent of the remaining Y}’s, it suffices to verify that Z| k| >m feYs £ 0. The latter
relation follows from the Three Series Theorem and Lemma, 3.2.
Direct verification, moreover, shows that

n \Ye 7 o9/a n -1 . n—|k|
(logn) /_WIn,ZO\)Xm()\)d/\:27r (” 2 t—ZthQ> > fi |[(nlogn)™V Z ZiZy |

|k|<m

so Relation (3.28) follows from Proposition 3.3.
Finally, to verify (3.29), notice that for m < n,

(3.32) /W Tz (X (A) = Xm (X)) /_ 7; (Z pn,z(h)e—“h) ( 3 fkewc> "

- |h|<n [k|>m

= Z pn,z(h) /_7r (Z fkei)\(kh)> d\

\h,|<n |[k|>m
= z Pn, Z fha
m<|h\<n
where
no N1 [l
(333) pn,Z(h) = (Z ZE) ( Z ZtZt—}—h) .
t=1 t=1

(The last equality in (3.32) is justified by the fact that 3= 5~ |fx]? < 00.) Equalities (3.32) and (3.33)
and a change of indices yield

n 1/0{ T .
(339 () " [ 02 () = xm ()
n -1 n—m—1 n
=A4r (n_Q/"‘ Z Zf) (nlog n)_l/o‘ Z Zy Z frhotZp.
t=1 t=1 h=m+t+1

16



By Proposition 3.3, n= 2/« y"" 72 A Yo, so (3.28) will follow once we have verified that

n—m—1 n
. . -1
(3.35) W}gnoo hrllri)s;pP {(n logn) 1/ Z Zy Z Jh—tZp|> 6} =0.
t=1 h=m+t+1

By (3.13) and the inequality (3.16), the probability in (3.35) is bounded above by

n—m—1 h

(3.36) Kopue *n™! > fnel
t=1 h=m+t+1

Since, by Lemma 3.2,

n—m—1 n n S
not S ftF <D0 DT IS < EmtH,
t=1 h=m+t+1 t=1 j=m+1

we see that (3.35) holds. W

Our next goal is to establish a relationship between the right-hand side of (3.2) and the right-hand
side of (3.26). The first step in this direction is to relate the sample variances of the processes {X;}
and {Z;}.

Lemma 3.3 Suppose the Z,,c;, X, and a, are as in Theorem 2.1. Then
n o0 n

(3.37) a2 > Xp = Zc? a,? > ZE(1 + op(1)).

k=1 =0

k=1

PrROOF: We ounly sketch the proof since it is similar to the proofs in Davis and Resnick (1985) and
(1986) which rely on point processes techniques. Let

A(dz) = apa:fo‘fll(o,oo) (z)dz + aq(—w)fo‘fll(_oo,o) (z)dz

be the Lévy measure of a stable random variable and set p(dt,dz) = dt x A(dz), t > 0, where dt
stands for the Lebesgue measure. If 357, €, j,) is the Poisson random measure with mean measure
@, then Theorem 2.2 of Davis and Resnick (1985) asserts that

(3.38) D €m0 T®) = D D €t ren)s
k=1

k=1i=1
where “=7” denotes the weak convergence of random measures on (0,00) x R™\{0,---,0}, yAQRES
(Zky Zg—1y---3Zg—m+1), and where e; € R™ is the basis element with ith component equal to
one and the rest zero. Instead of applying, as in Davis and Resnick (1985), the continuous map
(Zks Zk—15- - Zk—ms1) F Ezmz_ol cizk_; to both sides of (3.38), we shall apply the continuous map

(Zky Zh 15+ -+ 2k-ma1) = (X" €izk_iy 2,). Thus using Theorems 4.2 and 5.1 of Billingsley (1968),
and the arguments of the proof of Theorem 2.4 of Davis and Resnick, we get

n

o0 o0
(3-39) Z €lan (Xks Z1)) Z <€(Cojka je) t chijk, 0)) .
k=1

k=1 =1

17



where now the space is R?\{0,0}. Proceeding as in the proof of Theorem 4.2 of Davis and Resnick
(1985), it can be verified that (3.39) yields

n o0
(3.40) ;23 (x2,70) B (z &, 1) S,
k=1 =0

where the «a/2-stable random variable S is as in Theorem 2.1. Finally, applying the continuous map
h(u,v) = (u — (32520 c?)v)/v to both sides of (3.40), we obtain (3.37). N

Remark. Lemma 3.3 extends Lemma 5.2 of Mikosch et al., which was proved under the assumption
(1.6). We have shown that Condition (2.1) is sufficient for (3.37) to hold.
Lemma 3.3 yields the following useful corollary:

Corollary 3.2 For any fractional ARIMA process whose innovations satisfy (1.2) and (1.3),
G4 [ Lo = 1O 1+ op) [ Taz(Mg0 fo)n(N)aA

+7(0) 1 (1 + 0p(1)) <an2 i Z,%) /7r R,(A\)n(N\)dA,
k=1 T

where v(0) = 3272, c? and
(3.42) R () = [Ya(V)?
+Ya(A) | D cjeN <a’n1 > Zke”‘k> + Yo (=) [ D cje N <an1 > Zke“\k> ,
=0 k=1 j=0 k=1
and where _
0 o n—j ) n )
(3.43) Ya() = a5! 3 g ( T Zpe M- zz,ce—wf> .
Jj=0 k=1—j k=1

PRrROOF: Defining

2

b

2 1
and In,Z(A) = %

n .
Z Xte—'tx\t

1
t=1

n

n
Z Zte—i/\t
t=1

it can be verified identically as in the case of finite variance ARMA processes (cf. e.g. the proof of
Theorem 10.3.1 of Brockwell and Davis (1991)) that

o0

Z Cje_i)‘j

=0

2

(3'44) In,X(A) = In,Z()‘) + Rn()\)

Now, using Lemma 3.3, we have

[ nowoar = [0 (kzxk)

277()\)d>\

n
Z Xke—i)\k:
k=1

18



() [ oo

-1
= [ _QZZk +op(1 ))] X

9, Bo)In,z(X) + Rn(N)] n(A)dA

\

- tor(1) [ Tz(Mg(h fo)n(3dr
+7(0)71(1 + op(1)) <a;222,§> /7r R,(A)n(N)dx. R
k=1 -

Since g(A, Bo)n(A) = x(\) and a2 S}, Z2 2 S, by (3.40), we obtain

Corollary 3.3 The relation

4 n_ )" "R, O0n()dx B
(3.45) <logn> /_W L(AN(A)dA =0, as n— oo

together with Proposition 3.4 will imply Relation (3.2) and hence will complete the proof of Proposition
3.1.

Therefore, it remains to establish (3.45). In view of (3.42) and the fact that under the assumptions
of Theorem 1.2, a,, is proportional to n!/®, Relation (3.45) will follow once we have proved the following
two Lemmas:

Lemma 3.4 Setting Y,(\) = a,'An()\), we have,
(3.46) (nlogn)~'/e / 1A N)Pn(N)dA B0, as n - co.

Lemma 3.5 Setting C()\):= 3272, cje™ | we have

(3.47) (nlog n)_l/a (Z Z e ) A)dA ER 0, as n — oo.

—T

The proof of these lemmas involves delicate bounds where the assumption 0 < d < 1 — 1/« plays a
crucial role.

3.3 Proof of the two lemmas

PROOF OF LEMMA 3.4: We shall show that

(3.48) /e [ " AL PrVdN B o,

19



Observe that A, (A) can be conveniently split into four sums as follows:

00 n—j n
(3'49) Aﬂ(}\) — Z cje—iAj Z Zke—i)\k) _ Z Zke—i)\k
j=0 k=1—j k=1
= Pln(/\) + F2n(A) + P3n(A) + P4n(A)7
where
n—2 n+k
(3.50) T =3 | 3 get®=r |z,
k=0 \j=k-+1

9] n+k
(3.51) Ton(X) Z ( Z ¢ oilk— J)A)
1 \j=

k=n— =k+1

n—1
(3.52) T3,()) = —e ™ Z ( > c-ei(kj))‘> ks

j=k+1

o n
(3.53) Ty(A) = — (Z Cje_i)‘j) Z Zie A
j=n t=1

Clearly, (3.48) will follow once we have verified that

(3.54) e [* Pu ) Pinlax B o,

foru=1,2,3,4.
1) We first verify (3.54) with u = 1. Write

(355) AT |dA—Zz (/

n+t

Z cj ey

j=t+1

|77 Id/\>

n—2 n+k n+t
+ZZ—tZ—k/_W(Z cje k=) )(Z cjei =) ) n(\)[dA

t,k=0 k+1 Jj=t+1
t#£k
- n—2
S 0220+ S b2z
t=0 t,k=0
t#k

In order to establish upper bounds on the coefficients v, (t) and «,(k,t), observe that by Condition
(A.3) on p. 521 of Fox and Taqqu (1986), for any § > 0

(3.56) In(A)] = O(|A[%7?%), as X — 0.

Relation (3.56) and the two inequalities of Lemma 3.1 yield

(3.57) ()] < Ett! / NSy < oyt

20



if ¢ is small enough. The same argument shows that
(3.58) kn (K, t)| < Ka(tV )41,

Using (3.57), we obtain, for 1 < u < «,

2
Un (t)ZEt

n

n—2 n/2
(3.59) P {n_l/a S ()22, > e} < e HP2pR2eg
t=0

S
Il
N O

< e M 2p—12ap |un(t)|“/2|Z_t|“
=0

n—2

< H2E|Z |qu/2n—u/2a Z $d=1)p/2
=0

= 0 (n%’*‘@*‘l) .

Observe that the condition d < 1 — 1/a implies that the exponent —4- + @ + 1 is negative for p
sufficiently close to «. Therefore

n—2
(3.60) VS v (022, 5o
t=0
By Corollary 3.1, to show
n—2
(3.61) nV ST R (k)22 5 0
t k=1
t#k

it suffices to verify that for some 1 < y < a,

(3.62) > (Ve 50, as n— oo,
1<t<k<n—2

Note that the left-hand side of (3.62) is bounded above by a multiple of
n n
nfu/a/ (/ k(dl)“dk> dt = O(n(dfl)u+2fu/a)’
1 \Je

which tends to 0 as n — oo for y sufficiently close to a. Indeed if ;4 = «, the exponent of n becomes
—14+(d—1)a+2=(d—1)a+ 1 which is negative since d < 1 — 1/a.

Relations (3.60), (3.61) and (3.55) prove (3.54) with u = 1.

2) To verify (3.54) with u = 2, we must show that

o0
(3.63) Ve S 022, 5o
t=n—1
and o
(3.64) VST k() Z e Zop 50
t,k=n—1
t£k
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with the vy, (¢) and the k,(k,t) as in the case u = 1. Here, however, we need more delicate bounds
than (3.57) and (3.58). Write
|kn (ks )| < 2(11 + o),

where
w/n n+t n+k
(3.65) / Z c;jeN Z ;€M [n(N)]d;
0 lj=t+1 =kt 1
n+t n+k
(3.66) B[ 13 || Y e nnan
T/l im j=k+1
Note that by (3.56), for sufficiently small § > 0,
w/n
(3.67) L=0 / n2td g4 IN20g) | = o4 1Ed Inl 2449,
0

To establish an upper bound on I, set £ = nA in (3.66). Then,
(368) L=0 (tdlkd1n12d+5 . x2d25d$> — Ot Ld- L1240y,

Combining (3.67) and (3.68), we get
(3.69) Kon (K, 1) = O(19- 1 fd—1p1—24+9)

and, in particular,
(3.70) v (t) = O(tHd=D =24+,

Now we verify (3.63). By (3.70), for 1 < u < «, we have,

(371) { -1/a } < (enl/a

< K;N/2a i (tZ(dfl)nlf2d—|—6)u/2
t=n—1
= O(nH/)+(d-Du+1+(1-2d+0)u/2)

o0 fe's)

u/ 2
(t)Z2,|>

t=n—

Notice that if § = 0, and p = «, the exponent is equal to —3 + (d — 1)a+ 1+ (1 —2d)a/2 = (1 — a) /2
and is negative iff @ > 1. This completes the proof of (3.63).
To prove (3.64), we use Corollary 3.1. We have

Sl 00 k
(3.72) S Yona (k) = 0( / </ |n_1/atd_1kd_1n1_2d+‘5|"dt> dk)

t,k=n—1
_ 0 (n(1+61/a2d)u /°° (@ Du (/°° t(dl)udt) dk)

t£k
O(n(1+(5—1/a—2d)u+2(d—1)u+2)’
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which again tends to 0 as n — oo for y sufficiently close to . This completes the proof of (3.64) and
(3.54) with u = 2.
3) The proof of (3.54) with u = 3 is the same as in the case u = 1.

4) The case u = 4 is dealt with similarly as the previous three cases. Write

[ PamEmo wx—%§34+ > waltsh)Zi2,

1<t£k<n
where now
T | )2
vy = / S e ™| In(n)|dA
et
and
| X 2
ialkt) = [ |3 eje™™| In(n)jeXax,
=

By Lemma 3.1 and (3.56) we obtain
vy =0n4Y) and k,(t k) = O(n®Y).

Consequently, Proposition 3.3 and the condition d < 1 — 1/« imply

(3.73) nol/e Z v Z¢ < Knt/@)+d=1 ( e Z Z2>
t=1
The relation
(3.74) VN (k) 22 5 0
1<t<k<n

follows, by Corollary 3.1, from the relation
Z |n_1/°‘nd_1|“ — 0,

1<t<k<n

which is easily seen to hold for u sufficiently close to a.
This proves (3.54) with u = 4, completing the proof of Lemma 3.4. N

PROOF OF LEMMA 3.5: Here it is convenient to split A,()) as follows:
An()\) = Aln()\) + A?n(A) + A3n()\)a

where

Aln(A) = Pln(A +P2n Z eil/\t (Z C]Zt ]> ;
Agn()\) = an()\) = —e_i)‘" Z e_i)‘t Z CjZn_Hgfj ,
t=1 j=t
w . . n .
j=n t=1
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We verify below that
™ n .

(3.75) n~1/e / Aun(N) (2 ZkeZ)‘k> c\nNdx 5o,
d k=1

foru=1,2,3.
To prove (3.75) for u = 1 and u = 2, we need the following lemma.

Lemma 3.6 Suppose C(\) = 322 c;e™ and E(\) = 352, exe™* are functions on [—m, 7] whose
Fourier coefficients satisfy

(3.76) cj = O(li|1" ), e = O(lk|™71),
for some 0 < d < 1/2 and € > 0. Then the Fourier coefficients of the product CE satisfy

1

(3.77) hi= oo

/ MO E(A\)dA = 03141

PROOF: Conditions (3.76) imply that both C and E are in L?[—x, 7], so h; = Y _sociel—j. We

have, for [ > 0,
Il < 37 lejlle—sl+ D2 lejllenjl-

l71<t/2 l71>1/2
By (3.76),
> lejlle—s] = 0( >l - |€1>
l7]<t/2 lj1<t/2
2
o)
0
= 0 (ld = 6/ _1(1—37)_6_1dac>
0
— ld 1— 6 ld ].)
and

(o]
> lejlle-sl = O( > |j|d_1|6l—j|) =0 (ld_1 ) |€k|> =0@%"). =
l7]>1/2 l]>1/2 k= — o0
Now introduce the function

pt+g+1

HO) = o) = 3 5,000 -2

A
2 5,7 (A Bo).-

By Lemma 5 on p. 526 of Fox and Taqqu (1986), the Fourier coefficients of the functions a%jgfl (A, Bo)
are O(|k|72¢-119), so applying Lemma 3.6 (with E = 1) we see that H()\) = 32 ke where

[=—o0

(3.78) hy = O(|1]%71).
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Using (3.78) and the elementary identity

n—1 ] n ) n—1 . n—2 .
(3.79) (z atel)‘t> (Z bke’)‘k> = Z Ages + Z A_jes,
t=1 k=1 s=1 s=0

where
n—s n—1—s
Ag = z atbirs, $>0, and A_;= Z biatys, s>0,

we shall now show that for v =1 and u = 2,

(3.80) nt / " HO) AV (f: Zkei)‘k> a5 o.
k=1

-

1) Consider first the case u = 1. By (3.79), A1, (\) (X0 ZgeM) = S0 Age™ + "2 A e,

where
n—s 00 n—1-—s [e'e)
=> (D.¢iZij| Zers and A_y= Y Zi| Y. ¢jZipsj |-
t=1 \j=t t=1 j=t+s

Consequently,

]_ ™ n A 1 T o0 ) n—1 ' n—2 '
_/ HNALN) [ Y Zee™ | dr = _/ 3 e | (T A6 + 3 A e ) dA
27T —T k—1 27'(' T oo = =
n—1 n—2
= Z h_SAS + Z h'SA—s-
s=1 s=0

We will show that

(3.81) n-l/e Z h_gAg =n 1/ Z h_ Z (Z cjzt_j> Zivs 50,
s=1

t=1 \j=t

the verification of

n—1—s oo
(3.82) *l/aZh As —nfl/azh Z Z ( > Cth+s—j> 50

j=t+s

being similar.
By Corollary 3.1, since the bilinear form in (3.81) has no diagonal elements, it suffices to verify

that for some y < «
n—s oo

(3.83) n Z Ih—s|* 3" > Jej* — 0.

t=1 j=t

By (3.78), this reduces to showing
n n—s o

(3.84) n ke / sld=Dugs / dt / §4Drgj — 0.
1 1 t
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An elementary computation shows that the LHS of (3.84) is O(n #/e+(d=1)r+2)  The condition (d —
1)a + 1 < 0 guarantees that the exponent is negative for y sufficiently close to a.

2) Now consider the case u = 2. It is convenient to express Aon(A) as Agp(A) = —e AL ().
By (3.79), AL, (A\) (X0, Zpe*) = S0 Age + 32 A_je ™8 where

n—s [n—1 n—1—s n—1
As = Z Z chn+t—j Zt-l—s and A ;= Z Zy Z CjZn—|—t—|—s—j .

t=1 \j=t t=1 j=t+s
Consequently,
[ EWAR (S 2 iy = L [T enmyan ) (3 2 ) ax
21 Jn > k=1 ’ 21 J " k=1
1 T o0 o n—1 n—2
= %/_W _Z hjyne™ (_ Ages + ZASG_MS> dX
J oo s=1 s=0
n—1 n—2
= Z hn—sAs + Z hn—l—sA—s-
s=1 s=0
We first show that
n—1 n—1 n—s [n—1 P
(3.85) S by Ag =S b S € Znsej | Zus 2 0.
s=1 s=1 t=1 \ j=t
The bilinear form in (3.85) contains diagonal elements, so we prove separately that
n—1 n—s p
(3.86) S by Y ensZE >0
s=1 t=1
and
n—1 n—1 n—1 P
(3.87) n S b S S € Znsinj | Ziss > 0.
s=1 t=1 \ j=t
j#n—s

To prove (3.86), observe that

n—1 n—s n—1 J

2 _ . 2
E :hn—s E :Cn—sZt+s = E :hycj E :Zt+n—j
s=1 t=1 j=1 t=1

(3.88) =: i vn(m)Z2,.



Since H(\) = C(\)n(\) = O(A~YA249) = O(|A|4?) by (3.56), Inequality (3.18) yields vy, (m) =
1
)-

O((n —m + 1)%1). Consequently, for any u < a,
n n/2
Eln YN v, (m)Z2 < nTH2Ap| 7| Z |vn (m)|#/2
m=2 m=2
< KnH/l2 z (n—m+ 1)(d—1)u/2
m=2
n—1
— Knp M2 Z 1d=1)u/2
=1
(3.89) S Kln_“/2a+(d_1)(u/2)+l.

The condition (d — 1)a+ 1 < 0, again guarantees that the exponent in the last expression in (3.89) is
negative, which proves (3.86).
To verify (3.87), it suffices to show

n—sn—1

(3.90) n-H/e Z (sl D2 D Il = 0.

t=1 j=t

Tt is easy to check that the LHS of (3.90) is O(n—#/@+2(d=1)+3) and that the exponent is negative for
u < « sufficiently close to a.
We must also check that

n—2 n—1—s n—1
_ _ P
(3.91) n~le Y " hntsA_s=n Y E s E Z ( > CjZn-I—t-I—s—j) — 0.
s=0 J

j=t+s
Since the bilinear form in (3.91) has no diagonal elements, one checks as above that

n—1l—s n—1

(3.92) ﬂ/az hngs* > S gt =0,

t=1 j=t+s

if p < « is sufficiently close to a.
3) It remains to verify (3.75) with v = 3. Denote the left-hand side of (3.75) by —n~1/®I,,. Then

Lin = Tint + 2lans, where Lipy = v, Sy ZF with vy, = [T, C(V) (X352, ¢je~ ) n(A)dX and

n—1n—k

Iypo = Z Z K'n(k)ZtZH—k

k=1 t=1

with

(k) = / i (i:j >cos AR)n(A)dA.

™

One can verify that n=Y/2I,,; 5 0, 4 = 1,2, in the same way as relations (3.73) and (3.74). This
completes the proof of Lemma 3.5. N
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4 Simulation

The estimator 3, of the unknown parameter vector 3 minimizes the function o2(3) in (1.12). To find
Bn, one can use without modification programs for Gaussian time series, for example, the one given
in Section 12.1.3 of Beran (1994). These programs follow the minimization procedure described in
Fox and Taqqu (1986). This procedure differs from the one discussed in Section 1 in two respects,
neither of which affects the results. The division by 31 ; X2 in (1.10) can be ignored because this
quantity does not depend on the unknown parameter vector 8. There is also no need for subtracting
ST log g(X, B)dA as in Fox and Taqqu (1986), because, in the case of FARIMA, this integral equals a
constant independent of 3.

Mikosch et al. (1995) ran a simulation using ARMA sequences. Focusing on long-range dependence,
we generate here FARIMA (0,d,0) sequences with Sa.S innovations. In the Gaussian case a = 2, one
can apply the Durbin-Levinson algorithm (see Brockwell and Davis (1991)) to generate an exact
FARIMA, using for example, the arima.fracdiff.sim function in S-Plus. Because there is no known
technique to generate an exact FARIMA in the stable case, we will approximate the infinite moving
average (1.4) by the finite one

J
(4.1) X =Y ¢Zj, t=1,...,n.

Here ¢; = T'(j + d)/(T(d)T'(j + 1)) (see relation (7.13.1) in Samorodnitsky and Taqqu (1994)), and
therefore, these coefficients can be easily obtained by using the recursion relation:

j+d

CO:1, Cj+1 = ]+1 Cj-

The SaS innovations are obtained through the S-Plus function rstab which uses a version of the
Chambers, Mallow and Stuck (1976) algorithm described in Section 1.7 of Samorodnitsky and Tagqu
(1994).

We set J = 1000 in (4.1) and simulate series with parameters

(o,d) = (1.2,0.1), (1.5,0.2), (2,0.1), (2,0.2)

and sample sizes n = 100, 1000 and 10,000. Observe that 0 < d < 1—1/a. We included the Gaussian
a = 2, so that one can compare the results with this known case. Gaussian series are generated with
the S-Plus function arima-fraidiff.sim referred to earlier.

For each kind of time series, we generated 50 independent samples and reported the average values
of the estimates of d, the corresponding sample standard deviations and the square root of the sample
MSEs. The following notation is used. If dy is the nominal value of d and d; is the estimate for sample

1 then,
1 50 1 50

_ 1 &
d= _OZ 4QZ(d—d) MSE:E;(di—dO)Q.

The results are summarized in Table 1. Figure 1 displays the corresponding boxplots and shows
the relative scatter of the 50 estimates. The vertical axis in the figure indicates the deviations from
the nominal values of d. For each time series we have (1) a thick line for the median; (2) a box
representing the middle 50% of the data; (3) “Whiskers” encompassing approximately 95% of the
data, and designated by dashed lines; (4) Outliers that fall beyond the whiskers.
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HE [a=12d=01]a=15d=02[a=2d=01]|a=2d=02 ]

Average .066 161 .087 161

100 || & .079 .059 .089 .095
VvMSE .085 071 .089 102
Average .096 195 .098 .196

1000 || & .021 .030 .027 .026
MSE .021 .030 .027 .026

Average .099 .200 101 .200

10000 || & .005 .006 .008 .007
MSE .005 .006 .008 .007

Table 1: Estimation results for d using 50 replications.

The parameter d, as is well known, is hard to estimate when the time series is short. As in the
Gaussian case, ¢ and v M SE are relatively large for n = 100. The estimates improve dramatically for
large sample sizes. They are very good when n = 1000 and excellent when n = 10, 000.

Acknowledgment. The authors would like to thank Thomas Mikosch for pointing out an error in
the original proof of Lemma 3.5, Vadim Teverovsky for performing the simulations, and also the two
anonymous referees.
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Whittle Estimator applied to FARIMA(O,d,0)
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