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Abstract

In this paper a new method for inverting the Laplace transform
from the real axis is formulated. This method is based on a quadrature
formula. We assume that the unknown function f(t) is continuous
with (known) compact support. An adaptive iterative method and an
adaptive stopping rule, which yield the convergence of the approximate
solution to f(t), are proposed in this paper.

MSC: 15A12; 47A52; 65F05; 65F22
Key words: Fredholm integral equations of the first kind; (adaptive)iterative
regularization; inversion of the Laplace transform; discrepancy principle

1 Introduction

Consider the Laplace transform :

Lf(p) :=

∫ ∞

0
e−ptf(t)dt = F (p), Rep > 0, (1)

where L : X0,b → L2[0,∞),

X0,b := {f ∈ L2[0,∞) | suppf ⊂ [0, b)}, b > 0. (2)
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We assume in (2) that f has compact support. This is not a restriction
practically. Indeed, if limt→∞ f(t) = 0, then |f(t)| < δ for t > tδ, where δ >
0 is an arbitrary small number. Therefore, one may assume that suppf ⊂
[0, tδ ], and treat the values of f for t > tδ as noise. One may also note that
if f ∈ L1(0,∞), then

F (p) :=

∫ ∞

0
f(t)e−ptdt =

∫ b

0
f(t)e−ptdt +

∫ ∞

b
f(t)e−ptdt := F1(p) + F2(p),

and |F2(p)| ≤ e−bpδ, where
∫ ∞

b |f(t)|dt ≤ δ. Therefore, the contribution of
the ”tail” fb(t) of f ,

fb(t) :=

{

0, t < b,
f(t), t ≥ b,

can be considered as noise if b > 0 is large and δ > 0 is small. We assume
in (2) that f ∈ L2[0,∞). One may also assume that f ∈ L1[0,∞), or that
|f(t)| ≤ c1e

c2t, where c1, c2 are positive constants. If the last assumption
holds, then one may define the function g(t) := f(t)e−(c2+1)t. Then g(t) ∈
L1[0,∞), and its Laplace transform G(p) = F (p + c2 + 1) is known on the
interval [c2 +1, c2 +1+b] of real axis if the Laplace transform F (p) of f(t) is
known on the interval [0, b]. Therefore, our inversion methods are applicable
to these more general classes of functions f as well.

The operator L : X0,b → L2[0,∞) is compact. Therefore, the inversion
of the Laplace transform (1) is an ill-posed problem (see [17], [20]). Since the
problem is ill-posed, a regularization method is needed to obtain a stable in-
version of the Laplace transform. There are many methods to solve equation
(1) stably: variational regularization, quasisolutions, iterative regularization
(see e.g, [13], [17], [20], [21]). In this paper we propose an adaptive iterative
method based on the Dynamical Systems Method (DSM) developed in [20],
[21]. Some methods have been developed earlier for the inversion of the
Laplace transform (see [2], [5], [8], [12]). In many papers the data F (p) are
assumed exact and given on the complex axis. In [16] it is shown that the
results of the inversion of the Laplace transform from the complex axis are
more accurate than these of the inversion of the Laplace transform from the
real axis. The reason is the ill-posedness of the Laplace transform inversion
from the real axis. A survey regarding the methods of the Laplace trans-
form inversion has been given in [5]. There are several types of the Laplace
inversion method compared in [5]. The inversion formula for the Laplace
transform is well known:

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
F (p)eptdp, σ > 0, (3)
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is used in some of these methods, and then f(t) is computed by some quadra-
ture formulas, and many of these formulas can be found in [6] and [15].
Moreover, the ill-posedness of the Laplace transform inversion is not dis-
cussed in all the methods compared in [5]. The approximate f(t), obtained
by these methods when the data are noisy, may differ significantly from f(t).
There are some papers in which the inversion of the Laplace transform from
the real axis was studied (see [1], [4], [7], [10], [16], [18], [19], [23], [24]). In
[1] and [19] a method based on the Mellin transform is developed. In this
method the Mellin transform of the data F (p) is calculated first and then
inverted for f(t). In [4] a Fourier series method for the inversion of Laplace
transform from the real axis is developed. The drawback of this method
comes from the ill-conditioning of the discretized problem. It is shown in
[4] that if one uses some basis functions in X0,b, the problem becomes ex-
tremely ill-conditioned if the number m of the basis functions exceeds 20.
In [10] a reproducing kernel method is used for the inversion of the Laplace
transform. In the numerical experiments in [10] the authors use double and
multiple precision methods to obtain high accuracy inversion of the Laplace
transform. The usage of the multiple precision increases the computation
time significantly which is observed in [10], so this method may be not effi-
cient in practice. A detailed description of the multiple precision technique
can be found in [9] and [11]. Moreover, the Laplace transform inversion
with perturbed data is not discussed in [10]. In [24] the authors develop
an inversion formula, based on the eigenfunction expansion for the Laplace
transform. The difficulties with this method are: a) the inversion formula is
not applicable when the data are noisy, b) even for exact data the inversion
formula is not suitable for numerical implementation.

The Laplace transform as an operator from C0k into L2, where C0k =
{f(t) ∈ C[0,+∞) | suppf ⊂ [0, k)}, k = const > 0, L2 := L2[0,∞), is
considered in [7]. The finite difference method is used in [7] to discretize
the problem, where the size of the linear algebraic system obtained by this
method is fixed at each iteration, so the computation time increases if one
uses large linear algebraic systems. The method of choosing the size of the
linear algebraic system is not given in [7]. Moreover, the inversion of the
Laplace transform when the data F (p) is given only on a finite interval [0, d],
d > 0, is not discussed in [7].

The novel points in our paper are:

1) the representation of the approximation solution (73) of the function
f(t) which depends only on the kernel of the Laplace transform,

2) the adaptive iterative scheme (76) and adaptive stopping rule (87),
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which generate the regularization parameter, the discrete data Fδ(p)
and the number of terms in (73), needed for obtaining an approxima-
tion of the unknown function f(t).

We study the inversion problem using the pair of spaces (X0,b, L
2[0, d]),

whereX0,b is defined in (2), develop an inversion method, which can be easily
implemented numerically, and demonstrate in the numerical experiments
that our method yields the results comparable in accuracy with the results,
presented in the literature, e.g., with the double precision results given in
paper [10].

The smoothness of the kernel allows one to use the compound Simp-
son’s rule in approximating the Laplace transform. Our approach yields a
representation (73) of the approximate inversion of the Laplace transform.
The number of terms in approximation (73) and the regularization parame-
ter are generated automatically by the proposed adaptive iterative method.
Our iterative method is based on the iterative method proposed in [14].
The adaptive stopping rule we propose here is based on the discrepancy-
type principle, established in [22]. This stopping rule yields convergence of
the approximation (73) to f(t) when the noise level δ → 0.

A detailed derivation of our inversion method is given in Section 2. In
Section 3 some results of the numerical experiments are reported. These
results demonstrate the efficiency and stability of the proposed method.

2 Description of the method

Let f ∈ X0,b. Then equation (1) can be written as:

(Lf)(p) :=

∫ b

0
e−ptf(t)dt = F (p), 0 ≤ p. (4)

Let us assume that the data F (p), the Laplace transform of f , are known
only for 0 ≤ p ≤ d <∞. Consider the mapping Lm : L2[0, b] → R

m+1, where

(Lmf)i :=

∫ b

0
e−pitf(t)dt = F (pi), i = 0, 1, 2, . . . ,m, (5)

pi := ih, i = 0, 1, 2, . . . ,m, h :=
d

m
, (6)

and m is an even number which will be chosen later. Then the unknown
function f(t) can be obtained from a finite-dimensional operator equation
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(5). Let

〈u, v〉W m :=

m
∑

j=0

w
(m)
j ujvj and ‖u‖W m := 〈u, u〉W m (7)

be the inner product and norm in R
m+1, respectively, where w

(m)
j are the

weights of the compound Simpson’s rule (see [6, p.58]), i.e.,

w
(m)
j :=







h/3, j = 0,m;
4h/3, j = 2l − 1, l = 1, 2, . . . ,m/2;
2h/3, j = 2l, l = 1, 2, . . . , (m− 2)/2,

h =
d

m
, (8)

where m is an even number. Then

〈Lmg, v〉W m =

m
∑

j=0

w
(m)
j

∫ b

0
e−pjtg(t)dtvj

=

∫ b

0
g(t)

m
∑

j=0

w
(m)
j e−pjtvjdt = 〈g,L∗

mv〉X0,b
,

(9)

where

L∗
mv =

m
∑

j=0

w
(m)
j e−pjtvj , v :=











v0
v1
...
vm











∈ R
m+1. (10)

and

〈g, h〉X0,b
:=

∫ b

0
g(t)h(t)dt. (11)

It follows from (5) and (10) that

(L∗
mLmg)(t) =

m
∑

j=0

w
(m)
j e−pjt

∫ b

0
e−pjzg(z)dz := (T (m)g)(t), (12)

and

LmL∗
mv =













∫ b
0 e

−p0t
∑m

j=0w
(m)
j e−pjtvjdt

∫ b
0 e

−p1t
∑m

j=0w
(m)
j e−pjtvjdt

...
∫ b
0 e

−pmt
∑m

j=0w
(m)
j e−pjtvjdt













:= Q(m)v, (13)
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where

(Q(m))ij := w
(m)
j

∫ b

0
e−(pi+pj)tdt = w

(m)
j

1 − e−b(pi+pj)

pi + pj
, i, j = 0, 1, 2, . . . ,m.

(14)

Lemma 2.1. Let w
(m)
j be defined in (8). Then

m
∑

j=0

w
(m)
j = d, (15)

for any even number m.

Proof. From definition (8) one gets

m
∑

j=0

w
(m)
j = w

(m)
0 + w(m)

m +

m/2
∑

j=1

w
(m)
2j−1 +

(m−2)/2
∑

j=1

w
(m)
2j

=
2h

3
+

m/2
∑

j=1

4h

3
+

(m−2)/2
∑

j=1

2h

3

=
2h

3
+

2hm

3
+
h(m− 2)

3
= hm =

d

m
m = d.

(16)

Lemma 2.1 is proved.

Lemma 2.2. The matrix Q(m), defined in (14), is positive semidefinite and

self-adjoint in R
m+1 with respect to the inner product (7).

Proof. Let

(Hm)ij :=

∫ b

0
e−(pi+pj)tdt =

1 − e−b(pi+pj)

pi + pj
, (17)

and

(Dm)ij =

{

w
(m)
i , i = j;

0, otherwise,
(18)

w
(m)
j are defined in (8). Then 〈DmHmDmu, v〉Rm+1 = 〈u,DmHmDmv〉Rm+1 ,

where

〈u, v〉
Rm+1 :=

m
∑

j=0

ujvj , u, v ∈ R
m+1. (19)
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We have

〈Q(m)u, v〉W m =

m
∑

j=0

w
(m)
j (Q(m)u)jvj =

m
∑

j=0

(DmHmDmu)jvj

= 〈DmHmDmu, v〉Rm+1 = 〈u,DmHmDmv〉Rm+1

=
m

∑

j=0

uj(DmHmDmv)j =
m

∑

j=0

ujw
(m)
j (HmDmv)j

= 〈u,Q(m)v〉W m.

(20)

Thus, Q(m) is self-adjoint with respect to inner product (7). We have

(Hm)ij =

∫ b

0
e−(pi+pj)tdt =

∫ b

0
e−pite−pjtdt

= 〈φi, φj〉X0,b
, φi(t) := e−pit,

(21)

where 〈·, ·〉X0,b
is defined in (11). This shows that Hm is a Gram matrix.

Therefore,
〈Hmu, u〉Rm+1 ≥ 0, ∀u ∈ R

m+1. (22)

This implies

〈Q(m)u, u〉W m = 〈Q(m)u,Dmu〉Rm+1 = 〈HmDmu,Dmu〉Rm+1 ≥ 0. (23)

Thus, Q(m) is a positive semidefinite and self-adjoint matrix with respect to
the inner product (7).

Lemma 2.3. Let T (m) be defined in (12). Then T (m) is self-adjoint and

positive semidefinite operator in X0,b with respect to inner product (11).

Proof. From definition (12) and inner product (11) we get

〈T (m)g, h〉X0,b
=

∫ b

0

m
∑

j=0

w
(m)
j e−pjt

∫ b

0
e−pjzg(z)dzh(t)dt

=

∫ b

0
g(z)

m
∑

j=0

w
(m)
j e−pjz

∫ b

0
e−pjth(t)dtdz

= 〈g, T (m)h〉X0,b
.

(24)

Thus, T (m) is a self-adjoint operator with respect to inner product (11). Let
us prove that T (m) is positive semidefinite. Using (12), (8), (7) and (11),
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one gets

〈T (m)g, g〉X0,b
=

∫ b

0

m
∑

j=0

w
(m)
j e−pjt

∫ b

0
e−pjzg(z)dzg(t)dt

=

m
∑

j=0

w
(m)
j

∫ b

0
e−pjzg(z)dz

∫ b

0
e−pjtg(t)dt

=
m

∑

j=0

w
(m)
j

(∫ b

0
e−pjzg(z)dz

)2

≥ 0.

(25)

Lemma 2.3 is proved.

From (10) we get Range[L∗
m] = span{w(m)

j k(pj , ·, 0)}m
j=0, where

k(p, t, z) := e−p(t+z). (26)

Let us approximate the unknown f(t) as follows:

f(t) ≈
m

∑

j=0

c
(m)
j w

(m)
j e−pjt = T−1

a,mL∗
mF

(m) := fm(t), (27)

where pj are defined in (6), Ta,m is defined in (34), and c
(m)
j are constants

obtained by solving the linear algebraic system:

(aI +Q(m))c(m) = F (m), (28)

where Q(m) is defined in (13),

c(m) :=













c
(m)
0

c
(m)
1
...

c
(m)
m













and F (m) :=











F (p0)
F (p1)

...
F (pm)











. (29)

To prove the convergence of the approximate solution f(t), we use the fol-
lowing estimates, which are proved in [21], so their proofs are omitted.

Lemma 2.4. Let T (m) and Q(m) be defined in (12) and (13), respectively.

Then, for a > 0, the following estimates hold:

‖Q−1
a,mLm‖ ≤ 1

2
√
a
, (30)
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a‖Q−1
a,m‖ ≤ 1, (31)

‖T−1
a,m‖ ≤ 1

a
, (32)

‖T−1
a,mL∗

m‖ ≤ 1

2
√
a
, (33)

where

Qa,m := Q(m) + aI Ta,m := T (m) + aI, (34)

I is the identity operator and a = const > 0.

Estimates (30) and (31) are used in proving inequality (92), while esti-
mates (32) and (33) are used in the proof of lemmas 2.9 and 2.10, respec-
tively.

Let us formulate an iterative method for obtaining the approximation
solution of f(t) with the exact data F (p). Consider the following iterative
scheme

un(t) = qun−1(t) + (1 − q)T−1
an

L∗F, u0(t) = 0, (35)

where L∗ is the adjoint of the operator L, i.e.,

(L∗g)(t) =

∫ d

0
e−ptg(p)dp, (36)

(Tf)(t) := (L∗Lf)(t) =

∫ b

0

∫ d

0
k(p, t, z)dpf(z)dz

=

∫ b

0

f(z)

t+ z

(

1 − e−d(t+z)
)

dz,

(37)

k(p, t, z) is defined in (26),

Ta := aI + T, a > 0, (38)

an := qan−1, a0 > 0, q ∈ (0, 1). (39)

Lemma 2.5. Let Ta be defined in (38), Lf = F , and f ⊥ N (L), where

N (L) is the null space of L. Then

a‖T−1
a f‖ → 0 as a→ 0. (40)

Proof. Since f ⊥ N (L), it follows from the spectral theorem that

lim
a→0

a2‖T−1
a f‖2 = lim

a→0

∫ ∞

0

a2

(a+ s)2
d〈Esf, f〉 = ‖PN (L)f‖2 = 0,

where Es is the resolution of the identity corresponding to L∗L, and P is
the orthogonal projector onto N (L).
Lemma 2.5 is proved.
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Theorem 2.6. Let Lf = F , and un be defined in (35) Then

lim
n→∞

‖f − un‖ = 0. (41)

Proof. By induction we get

un =

n−1
∑

j=0

ω
(n)
j T−1

aj+1
L∗F, (42)

where Ta is defined in (38), and

ω
(n)
j := qn−j−1 − qn−j. (43)

Using the identities
Lf = F, (44)

T−1
a L∗L = T−1

a (T + aI − aI) = I − aT−1
a (45)

and
n−1
∑

j=0

ω
(n)
j = 1 − qn, (46)

we get

f − un = f −
n−1
∑

j=0

ω
(n)
j f +

n−1
∑

j=0

ω
(n)
j aj+1T

−1
aj+1

f

= qnf +

n−1
∑

j=0

ω
(n)
j aj+1T

−1
aj+1

f.

(47)

Therefore,

‖f − un‖ ≤ qn‖f‖ +

n−1
∑

j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖. (48)

To prove relation (41) the following lemma is needed:

Lemma 2.7. Let g(x) be a continuous function on (0,∞), c > 0 and q ∈
(0, 1) be constants. If

lim
x→0+

g(x) = g(0) := g0, (49)

then

lim
n→∞

n−1
∑

j=0

(

qn−j−1 − qn−j
)

g(cqj+1) = g0. (50)

10



Proof. Let

Fl(n) :=

l−1
∑

j=1

ω
(n)
j g(cqj+1), (51)

where ω
(n)
j are defined in (43). Then

|Fn+1(n) − g0| ≤ |Fl(n)| +

∣

∣

∣

∣

∣

∣

n
∑

j=l

ω
(n)
j g(cqj+1) − g0

∣

∣

∣

∣

∣

∣

.

Take ǫ > 0 arbitrarily small. For sufficiently large fixed l(ǫ) one can choose
n(ǫ) > l(ǫ), such that

|Fl(ǫ)(n)| ≤ ǫ

2
, ∀n > n(ǫ),

because limn→∞ qn = 0. Fix l = l(ǫ) such that |g(cqj)− g0| ≤ ǫ
2 for j > l(ǫ).

This is possible because of (49). One has

|Fl(ǫ)(n)| ≤ ǫ

2
, n > n(ǫ) > l(ǫ)

and
∣

∣

∣

∣

∣

∣

n
∑

j=l(ǫ)

ω
(n)
j g(cqj+1) − g0

∣

∣

∣

∣

∣

∣

≤
n

∑

j=l(ǫ)

ω
(n)
j |g(cqj+1) − g0| + |

n
∑

j=l(ǫ)

ω
(n)
j − 1||g0|

≤ ǫ

2

n
∑

j=l(ǫ)

ω
(n)
j + qn−l(ǫ)|g0|

≤ ǫ

2
+ |g0|qn−l(ǫ) ≤ ǫ,

if n(ǫ) is sufficiently large. Here we have used the relation

n
∑

j=l

ω
(n)
j = 1 − qn−l.

Since ǫ > 0 is arbitrarily small, relation (50) follows.
Lemma 2.7 is proved.

Lemma 2.5 together with Lemma 2.7 with g(a) = a‖T−1
a f‖ yield

lim
n→∞

n−1
∑

j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖ = 0. (52)
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This together with estimate (48) and condition q ∈ (0, 1) yield relation (41).
Theorem 2.6 is proved.

Lemma 2.8. Let T and T (m) be defined in (37) and (12), respectively. Then

‖T − T (m)‖ ≤ (2bd)5

540
√

10m4
. (53)

Proof. From definitions (37) and (12) we get

|(T − T (m))f(t)| ≤
∫ b

0

∣

∣

∣

∣

∣

∣

∫ d

0
k(p, t, z)dp −

m
∑

j=0

w
(m)
j k(pj , t, z)

∣

∣

∣

∣

∣

∣

|f(z)|dz

≤
∫ b

0

∣

∣

∣

∣

d5

180m4
max
p∈[0,d]

(t+ z)4e−p(t+z)

∣

∣

∣

∣

|f(z)|dz

=

∫ b

0

d5

180m4
(t+ z)4|f(z)|dz ≤ d5

180m4

(∫ b

0
(t+ z)8dz

)1/2

‖f‖X0,b

=
d5

180m4

[

(t+ b)9 − t9

9

]1/2

‖f‖X0,b
,

(54)

where the following upper bound for the error of the compound Simpson’s
rule was used (see [6, p.58]): for f ∈ C(4)[x0, x2l], x0 < x2l,

∣

∣

∣

∣

∣

∣

∫ x2l

x0

f(x)dx− h

3



f0 + 4
l

∑

j=1

f2(j−1) + 2
l−1
∑

j=1

f2j + fx2l





∣

∣

∣

∣

∣

∣

≤ Rl, (55)

where

fj := f(xj), xj = x0 + jh, j = 0, 1, 2, . . . , 2l, h =
x2l − x0

2l
, (56)

and

Rl =
(x2l − x0)

5

180(2l)4
|f (4)(ξ)|, x0 < ξ < x2l. (57)

This implies

‖(T−T (m))f‖X0,b
≤ d5

540m4

[

(2b)10 − 2b10

10

]1/2

‖f‖X0,b
≤ (2bd)5

540
√

10m4
‖f‖X0,b

,

(58)
so estimate (53) is obtained.
Lemma 2.8 is proved.
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Lemma 2.9. Let 0 < a < a0,

m = κ
(a0

a

)1/4
, κ > 0. (59)

Then

‖T − T (m)‖ ≤ (2bd)5

540
√

10a0κ4
a, (60)

where T and T (m) are defined in (37) and (12), respectively.

Proof. Inequality (60) follows from estimate (53) and formula (59).

Lemma 2.9 leads to an adaptive iterative scheme:

un,mn(t) = qun−1,mn−1 + (1 − q)T−1
an,mn

L∗
mn
F (mn), u0,m0(t) = 0, (61)

where q ∈ (0, 1), an are defined in (39), Ta,m is defined in (34), AmL is
defined in (5), and

F (m) :=









F (p0)
F (p1)
. . .

F (pm)









∈ R
m+1, (62)

pj are defined in (6). In the iterative scheme (61) we have used the finite-
dimensional operator T (m) approximating the operator T . Convergence of
the iterative scheme (61) to the solution f of the equation Lf = F is estab-
lished in the following lemma:

Lemma 2.10. Let Lf = F and un,mn be defined in (61). If mn are chosen

by the rule

mn =

⌈[

κ

(

a0

an

)1/4
]⌉

, an = qan−1, q ∈ (0, 1), κ, a0 > 0, (63)

where ⌈[x]⌉ is the smallest even number not less than x, then

lim
n→∞

‖f − un,mn‖ = 0. (64)

Proof. Consider the estimate

‖f − un,mn‖ ≤ ‖f − un‖ + ‖un − un,mn‖ := I1(n) + I2(n), (65)
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where I1(n) := ‖f − un‖ and I2(n) := ‖un − un,mn‖. By Theorem 2.6,
we get I1(n) → 0 as n → ∞. Let us prove that limn→∞ I2(n) = 0. Let
Un := un − un,mn . Then, from definitions (35) and (61), we get

Un = qUn−1 + (1 − q)
(

T−1
an

L∗F − T−1
an,mn

L∗
mn
F (mn)

)

, U0 = 0. (66)

By induction we obtain

Un =

n−1
∑

j=0

ω
(n)
j

(

T−1
aj+1

L∗F − T−1
aj+1,mj+1

(Lmj+1)
∗F (mj+1)

)

, (67)

where ωj are defined in (43). Using the identities Lf = F , Lmf = F (m),

T−1
a T = T−1

a (T + aI − aI) = I − aT−1
a , (68)

T−1
a,mT

(m) = T−1
a,m(T (m) + aI − aI) = I − aT−1

a,m, (69)

T−1
a,m − T−1

a = T−1
a,m(T − T (m))T−1

a , (70)

one gets

Un =

n−1
∑

j=0

ω
(n)
j aj+1

(

T−1
aj+1,mj+1

− T−1
aj+1

)

f

=

n−1
∑

j=0

ω
(n)
j aj+1T

−1
aj+1,mj+1

(

T − T (mj+1)
)

T−1
aj+1

f.

(71)

This together with the rule (63), estimate (32) and Lemma 2.8 yield

‖Un‖ ≤
n−1
∑

j=0

ω
(n)
j aj+1‖T−1

aj+1,mj+1
‖‖T − T (mj+1)‖‖T−1

aj+1
f‖

≤ (2bd)5

540
√

10a0κ4

n−1
∑

j=0

ω
(n)
j aj+1‖T−1

aj+1
f‖.

(72)

Applying Lemma 2.5 and Lemma 2.7 with g(a) = a‖T−1
a f‖, we obtain

limn→∞ ‖Un‖ = 0.
Lemma 2.10 is proved.
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2.1 Noisy data

When the data F (p) are noisy, the approximate solution (27) is written as

f δ
m(t) =

m
∑

j=0

w
(m)
j c

(m,δ)
j e−pjt = T−1

a,mL∗
mF

(m)
δ , (73)

where the coefficients c
(m,δ)
j are obtained by solving the following linear

algebraic system:

Qa,mc
(m,δ) = F

(m)
δ , (74)

Qa,m is defined in (34),

c(m,δ) :=











c
(m,δ)
0

c
(m,δ)
1

. . .

c
(m,δ)
m











, F
(m)
δ :=









Fδ(p0)
Fδ(p1)
. . .

Fδ(pm)









, (75)

w
(m)
j are defined in (8), and pj are defined in (6).

To get the approximation solution of the function f(t) with the noisy
data Fδ(p), we consider the following iterative scheme:

uδ
n,mn

= quδ
n−1,mn−1

+ (1 − q)T−1
an,mn

L∗
mn
F

(mn)
δ , uδ

0,m0
= 0, (76)

where Ta,m is defined in (34), an are defined in (39), q ∈ (0, 1), F
(m)
δ is

defined in (75), and mn are chosen by the rule (63). Let us assume that

Fδ(pj) = F (pj) + δj , 0 < |δj | ≤ δ, j = 0, 1, 2, . . . ,m, (77)

where δj are random quantities generated from some statistical distributions,
e.g., the uniform distribution on the interval [−δ, δ], and δ is the noise level
of the data F (p). It follows from assumption (77), definition (8), Lemma 2.1
and the inner product (7) that

‖F (m)
δ − F (m)‖2

W m =

m
∑

j=0

w
(m)
j δ2j ≤ δ2

m
∑

j=0

w
(m)
j = δ2d. (78)

Lemma 2.11. Let un,mn and uδ
n,mn

be defined in (61) and (76), respectively.

Then

‖un,mn − uδ
n,mn

‖ ≤
√
dδ

2
√
an

(1 − qn), q ∈ (0, 1), (79)

where an are defined in (39).
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Proof. Let U δ
n := un,mn − uδ

n,mn
. Then, from definitions (61) and (76),

U δ
n = qU δ

n−1 + (1 − q)T−1
an,mn

L∗
mn

(F (mn) − F
(mn)
δ ), U δ

0 = 0. (80)

By induction we obtain

U δ
n =

n−1
∑

j=0

ω
(n)
j T−1

aj+1,mj+1
(Lmj+1)

∗(F (mj+1) − F
(mj+1)
δ ), (81)

where ω
(n)
j are defined in (43). Using estimates (78) and inequality (33),

one gets

‖U δ
n‖ ≤

√
d

n−1
∑

j=0

ω
(n)
j

δ

2
√
aj+1

≤
√
dδ

2
√
an

m
∑

j=0

ω
(n)
j =

√
dδ

2
√
an

(1 − qn), (82)

where ωj are defined in (43).
Lemma 2.11 is proved.

Theorem 2.12. Suppose that conditions of Lemma 2.10 hold, and nδ sat-

isfies the following conditions:

lim
δ→0

nδ = ∞, lim
δ→0

δ
√
anδ

= 0. (83)

Then

lim
δ→0

‖f − uδ
nδ,mnδ

‖ = 0. (84)

Proof. Consider the estimate:

‖f − uδ
nδ,mnδ

‖ ≤ ‖f − unδ,mnδ
‖ + ‖unδ,mnδ

− uδ
nδ,mnδ

‖. (85)

This together with Lemma 2.11 yield

‖f − uδ
nδ,mnδ

‖ ≤ ‖f − unδ,mnδ
‖ +

√
dδ

2
√
anδ

(1 − qn). (86)

Applying relations (83) in estimate (86), one gets relation (84).
Theorem 2.12 is proved.

In the following subsection we propose a stopping rule which implies
relations (83).
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2.2 Stopping rule

In this subsection a stopping rule which yields relations (83) in Theorem 2.12
is given. We propose the stopping rule

Gnδ,mnδ
≤ Cδε < Gn,mn , 1 ≤ n < nδ, C >

√
d, ε ∈ (0, 1), (87)

where

Gn,mn = qGn−1,mn−1 + (1 − q)‖Lmnz
(mn,δ) − F

(mn)
δ ‖W mn , G0,m0 = 0, (88)

‖ · ‖W m is defined in (7),

z(m,δ) :=
m

∑

j=0

c
(m,δ)
j w

(m)
j e−pjt, (89)

w
(m)
j and pj are defined in (8) and (6), respectively, and c

(m,δ)
j are obtained

by solving linear algebraic system (74).
We observe that

Lmnz
(mn,δ) − F

(mn)
δ = Q(mn)c(mn,δ) − F

(mn)
δ

= Q(mn)(anI +Q(mn))−1F
(mn)
δ − F

(mn)
δ

= (Q(mn) + anI − anI)(anI +Q(mn))−1F
(mn)
δ − F

(mn)
δ

= −an(anI +Q(mn))−1F
(mn)
δ = −anc

(mn,δ).

(90)

Thus, the sequence (88) can be written in the following form

Gn,mn = qGn−1,mn−1 + (1 − q)an‖c(mn ,δ)‖W mn , G0,m0 = 0, (91)

where ‖ ·‖W m is defined in (7), and c(m,δ) solves the linear algebraic systems
(74).

It follows from estimates (78), (30) and (31) that

an‖c(mn ,δ)‖W mn = an‖(anI +Q(mn))−1F
(mn)
δ ‖W mn

≤ an‖(anI +Q(mn))−1(F
(mn)
δ − F (mn))‖W mn

+ an‖(anI +Q(mn))−1F (mn)‖W mn

≤ ‖F (mn)
δ − F (mn)‖W mn

+ an‖(anI +Q(mn))−1Lmnf‖W mn

≤ δ
√
d+

√
an‖f‖X0,b

.

(92)

17



This together with (91) yield

Gn,mn ≤ qGn−1,mn−1 + (1 − q)
(

δ
√
d+

√
an‖f‖X0,b

)

, (93)

or
Gn,mn − δ

√
d ≤ q(Gn−1,mn−1 − δ

√
d) + (1 − q)

√
an‖f‖X0,b

. (94)

Lemma 2.13. The sequence (91) satisfies the following estimate:

Gn,mn − δ
√
d ≤

(1 − q)
√
an‖f‖X0,b

1 −√
q

, (95)

where an are defined in (39).

Proof. Define
Ψn := Gn,mn − δ

√
d (96)

and
ψn := (1 − q)

√
an‖f‖X0,b

. (97)

Then estimate (94) can be rewritten as

Ψn ≤ qΨn−1 +
√
qψn−1, (98)

where the relation an = qan−1 was used. Let us prove estimate (95) by
induction. For n = 0 we get

Ψ0 = −δ
√
d ≤

(1 − q)
√
a0‖f‖X0,b

1 −√
q

. (99)

Suppose estimate (95) is true for 0 ≤ n ≤ k. Then

Ψk+1 ≤ qΨk +
√
qψk ≤ q

1 −√
q
ψk +

√
qψk

=

√
q

1 −√
q
ψk =

√
q

1 −√
q

ψk

ψk+1
ψk+1

=

√
q

1 −√
q

√
ak√
ak+1

ψk+1 =
1

1 −√
q
ψk+1,

(100)

where the relation ak+1 = qak was used.
Lemma 2.13 is proved.

Lemma 2.14. Suppose

G1,m1 > δ
√
d, (101)

where Gn,mn are defined in (91). Then there exist a unique integer nδ,

satisfying the stopping rule (87) with C >
√
d.
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Proof. From Lemma 2.13 we get the estimate

Gn,mn ≤ δ
√
d+

(1 − q)
√
an‖f‖X0,b

1 −√
q

, (102)

where an are defined in (39). Therefore,

lim sup
n→∞

Gn,mn ≤ δ
√
d, (103)

where the relation limn→∞ an = 0 was used. This together with condition
(101) yield the existence of the integer nδ. The uniqueness of the integer nδ

follows from its definition.
Lemma 2.14 is proved.

Lemma 2.15. Suppose conditions of Lemma 2.14 hold and nδ is chosen by

the rule (87). Then

lim
δ→0

δ
√
anδ

= 0. (104)

Proof. From the stopping rule (87) and estimate (102) we get

Cδε ≤ Gnδ−1,mnδ−1 ≤ δ
√
d+

(1 − q)
√
anδ−1‖f‖X0,b

1 −√
q

, (105)

where C >
√
d, ε ∈ (0, 1). This implies

δ(Cδε−1 −
√
d)

√
anδ−1

≤
(1 − q)‖f‖X0,b

1 −√
q

, (106)

so, for ε ∈ (0, 1), and anδ
= qanδ−1, one gets

lim
δ→0

δ
√
anδ

= lim
δ→0

δ√
q
√
anδ−1

≤ lim
δ→0

(1 − q)δ1−ε‖f‖X0,b

(
√
q − q)(C − δ1−ε

√
d)

= 0. (107)

Lemma 2.15 is proved.

Lemma 2.16. Consider the stopping rule (87), where the parameters mn

are chosen by rule (63). If nδ is chosen by the rule (87) then

lim
δ→0

nδ = ∞. (108)
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Proof. From the stopping rule (87) with the sequence Gn defined in (91)
one gets

qCδε + (1 − q)anδ
‖c(mnδ

,δ)‖W mnδ ≤ qGnδ−1,mnδ−1

+ (1 − q)anδ
‖c(mnδ

,δ)‖W mnδ = Gnδ,mnδ
< Cδε,

(109)

where c(m,δ) is obtained by solving linear algebraic system (74). This implies

0 < anδ
‖c(mnδ

,δ)‖W mnδ ≤ Cδε. (110)

Thus,
lim
δ→0

anδ
‖c(mnδ

,δ)‖W mnδ = 0. (111)

If F (m) 6= 0, then there exists a λ
(m)
0 > 0 such that

E
(m)

λ
(m)
0

F (m) 6= 0, 〈E(m)
λ0

F (m), F (m)〉W m := ξ(m) > 0, (112)

where E
(m)
s is the resolution of the identity corresponding to the operator

Q(m) := LmL∗
m. Let

hm(δ, α) := α2‖Q−1
m,αF

(m)
δ ‖2

W m , Qm,a := aI +Q(m).

For a fixed number a > 0 we obtain

hm(δ, a) = a2‖Q−1
m,aF

(m)
δ ‖2

W m

=

∫ ∞

0

a2

(a+ s)2
d〈E(m)

s F
(m)
δ , F

(m)
δ 〉W m

≥
∫ λ

(m)
0

0

a2

(a+ s)2
d〈E(m)

s F
(m)
δ , F

(m)
δ 〉W m

≥ a2

(a+ λ0)2

∫ λ
(m)
0

0
d〈E(m)

s F
(m)
δ , F

(m)
δ 〉W m

=
a2‖E(m)

λ
(m)
0

F
(m)
δ ‖2

W m

(a+ λ
(m)
0 )2

.

(113)

Since E
(m)
λ0

is a continuous operator, and ‖F (m)−F (m)
δ ‖W m <

√
dδ, it follows

from (112) that

lim
δ→0

〈E(m)
λ0

F
(m)
δ , F

(m)
δ 〉W m = 〈E(m)

λ0
F (m), F (m)〉W m > 0. (114)

20



Therefore, for the fixed number a > 0 we get

hm(δ, a) ≥ c2 > 0 (115)

for all sufficiently small δ > 0, where c2 is a constant which does not depend
on δ. Suppose limδ→0 anδ

6= 0. Then there exists a subsequence δj → 0 as
j → ∞, such that

anδj
≥ c1 > 0, (116)

and

0 < mnδj
=

⌈

[κ(a0/anδj
)1/4]

⌉

≤
⌈

[κ(a0/c1)
1/4]

⌉

:= c3 <∞, κ, a0 > 0,

(117)
where the rule (63) was used to obtain the parameters mnδj

. This together

with (112) and (115) yield

lim
j→∞

hmnδj
(δj , anδj

) ≥ lim
j→∞

a2
nδj

‖E
(mnδj

)

λ
(mnδj

)

0

F
(mnδj

)

δj
‖2

W
mnδj

(anδj
+ λ

(mnδj
)

0 )2

≥ lim inf
j→∞

c21‖E
(mnδj

)

λ
(mnδj

)

0

F
(mnδj

)‖2

W
mnδj

(c1 + λ
(mnδj

)

0 )2
> 0.

(118)

This contradicts relation (111). Thus, limδ→0 anδ
= limδ→0 a0q

nδ = 0, i.e.,
limδ→0 nδ = ∞.
Lemma 2.16 is proved.

It follows from Lemma 2.15 and Lemma 2.16 that the stopping rule (87)
yields the relations (83). We have proved the following theorem:

Theorem 2.17. Suppose all the assumptions of Theorem 2.12 hold, mn are

chosen by the rule (63), nδ is chosen by the rule (87) and G1,m1 > Cδ, where

Gn,mn are defined in (91), then

lim
δ→0

‖f − uδ
nδ,mnδ

‖ = 0. (119)

2.3 The algorithm

Let us formulate the algorithm for obtaining the approximate solution f δ
m:
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(1) The data Fδ(p) on the interval [0, d], d > 0, the support of the function
f(t), and the noise level δ;

(2) initialization : choose the parameters κ > 0, a0 > 0, q ∈ (0, 1), ε ∈
(0, 1), C >

√
d, and set uδ

0,m0
= 0, G0 = 0, n = 1;

(3) iterate, starting with n = 1, and stop when condition (126) ( see below)
holds,

(a) an = a0q
n,

(b) choose mn by the rule (63),

(c) construct the vector F
(mn)
δ :

(F
(mn)
δ )l = Fδ(pl), pl = lh, h = d/mn, l = 0, 1, . . . ,m, (120)

(d) construct the matrices Hmn and Dmn :

(Hmn)ij :=

∫ b

0
e−(pi+pj)tdt =

1 − e−b(pi+pj)

pi + pj
, i, j = 1, 2, 3, . . . ,mn

(121)

(Dmn)ij =

{

w
(mn)
i , i = j;

0, otherwise,
(122)

where w
(m)
j are defined in (8),

(e) solve the following linear algebraic systems:

(anI +HmnDmn)c(mn,δ) = F
(mn)
δ , (123)

where (c(mn ,δ))i = c
(mn,δ)
i ,

(f) update the coefficient c
(mn,δ)
j of the approximate solution uδ

n,mn
(t)

defined in (73) by the iterative formula:

uδ
n,mn

(t) = quδ
n−1,mn−1

(t) + (1 − q)

mn
∑

j=1

c(mn,δ)w
(mn)
j e−pjt, (124)

where
uδ

0,m0
(t) = 0. (125)

Stop when for the first time the inequality

Gn,mn = qGn−1,mn−1 + an‖c(mn,δ)‖W mn ≤ Cδε (126)

holds, and get the approximation f δ(t) = uδ
nδ,mnδ

(t) of the function

f(t) by formula (124).
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3 Numerical experiments

3.1 The parameters κ, a0, d

From definition (39) and the rule (63) we conclude that mn → ∞ as an → 0.
Therefore, one needs to control the value of the parameter mn so that it
will not grow too fast as an decreases. The role of the parameter κ in
(63) is to control the value of the parameter mn so that the value of the
parameter mn will not be too large. Since for sufficiently small noise level δ,
namely δ ∈ (10−16, 10−6], the regularization parameter anδ

, obtained by the
stopping rule (87), is at most O(10−9), we suggest to choose κ in the interval
(0, 1]. For the noise level δ ∈ (10−6, 10−2] one can choose κ ∈ (1, 3]. To
reduce the number of iterations we suggest to choose the geometric sequence
an = a0δ

αn, where a0 ∈ [0.1, 0.2] and α ∈ [0.5, 0.9]. One may assume without
loss of generality that b = 1, because a scaling transformation reduces the
integral over (0, b) to the integral over (0, 1). We have assumed that the data
F (p) are defined on the interval J := [0, d]. In the case the interval J =
[d1, d], 0 < d1 < d, the constant d in estimates (60), (78), (79), (82), (94),
(95), and (102) are replaced with the constant d− d1. If b = 1, i.e., f(t) = 0
for t > 1, then one has to take d not too large. Indeed, if f(t) = 0 for t > 1,
then an integration by parts yields: F (p) = [f(0) − e−pf(1)]/p + O(1/p2),
p→ ∞. If the data are noisy, and the noise level is δ, then the data becomes
indistinguishable from noise for p = O(1/δ). Therefore it is useless to keep
the data Fδ(p) for d > O(1/δ). In practice one may get a satisfactory
accuracy of inversion by the method, proposed in this paper, when one uses
the data with d ∈ [1, 20] when δ ≤ 10−2. In all the numerical examples we
have used d = 5. Given the interval [0, d], the proposed method generates
automatically the discrete data Fδ(pj), j = 0, 1, 2, . . . ,m, over the interval
[0, d] which are needed to get the approximation of the function f(t).

3.2 Experiments

To test the proposed method we consider some examples proposed in [1],
[2], [3], [4], [5], [8], [10], [16], [18] and [24]. To illustrate the numerical
stability of the proposed method with respect to the noise, we use the noisy
data Fδ(p) with various noise levels δ = 10−2, δ = 10−4 and δ = 10−6.
The random quantities δj in (77) are obtained from the uniform probability
density function over the interval [−δ, δ]. In examples 1-12 we choose the
value of the parameters as follows: an = 0.1qn, q = δ1/2 and d = 5. The
parameter κ = 1 is used for the noise levels δ = 10−2 and δ = 10−4. When
δ = 10−6 we choose κ = 0.3 so that the value of the parameters mn are not
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very large, namely mn ≤ 300. Therefore, the computation time for solving
linear algebraic system (123) can be reduced significantly. We assume that
the support of the function f(t) is in the interval [0, b] with b = 10. In the
stopping rule (87) the following parameters are used: C =

√
d + 0.01, ε =

0.99. In example 13 the function f(t) = e−t is used to test the applicability
of the proposed method to functions without compact support. The results
are given in Table 13 and Figure 13.

For a comparison with the exact solutions we use the mean absolute
error:

MAE :=

[∑100
j=1(f(ti) − f δ

mnδ
(ti))

2

100

]1/2

, tj = 0.01+0.1(j−1), j = 1, . . . , 100,

(127)
where f(t) is the exact solution and f δ

mnδ
(t) is the approximate solution.

The computation time (CPU time) for obtaining the approximation of f(t),
the number of iterations (Iter.), and the parameters mnδ

and anδ
generated

by the proposed method are given in each experiment (see Tables 1-12). All
the calculations are done in double precision generated by MATLAB.

• Example 1. (see [10])

f1(t) =

{

1, 1/2 ≤ t ≤ 3/2,
0, otherwise,

F1(p) =

{

1, p = 0,
e−p/2−e−3p/2

p , p > 0.

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

 

 
exact sol

δ =10−2

δ=10−4

δ=10−6

Figure 1: Example 1: the stability of the approximate solution

The reconstruction of the exact solution for different values of the
noise level δ is shown in Figure 1. When the noise level δ = 10−6, our
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Table 1: Example 1.

δ MAE mnδ
Iter. CPU time(second) anδ

1.00 × 10−2 9.62 × 10−2 30 3 3.13 × 10−2 2.00 × 10−3

1.00 × 10−4 5.99 × 10−2 32 4 6.25 × 10−2 2.00 × 10−7

1.00 × 10−6 4.74 × 10−2 54 5 3.28 × 10−1 2.00 × 10−10

result is comparable with the double precision results shown in [10].
The proposed method is stable with respect to the noise δ as shown
in Table 1.

• Example 2. (see [4], [10] )

f2(t) =







1/2, t = 1,
1, 1 < t < 10,
0, elsewhere,

F2(p) =

{

9, p = 0,
e−p−e−10p

p , p > 0.
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Figure 2: Example 2: the stability of the approximate solution

Table 2: Example 2.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 1.09 × 10−1 30 2 3.13 × 10−2 2.00 × 10−3

1.00 × 10−4 8.47 × 10−2 32 3 6.25 × 10−2 2.00 × 10−6

1.00 × 10−6 7.41 × 10−2 54 5 4.38 × 10−1 2.00 × 10−12

The reconstruction of the function f2(t) is plotted in Figure 2. In [10]
a high accuracy result is given by means of the multiple precision. But,
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as reported in [10], to get such high accuracy results, it takes 7 hours.
From Table 2 and Figure 2 we can see that the proposed method yields
stable solution with respect to the noise level δ. The reconstruction of
the exact solution obtained by the proposed method is better than the
reconstruction shown in [4]. The result is comparable with the double
precision results given in [10]. For δ = 10−6 and κ = 0.3 the value of
the parameter mnδ

is bounded by the constant 54.

• Example 3. (see [1], [4], [5], [18], [24])

f3(t) =

{

te−t, 0 ≤ t < 10,
0, otherwise,

F3(p) =
1 − e−(p+1)10

(p + 1)2
− 10e−(p+1)10

p+ 1
.
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Figure 3: Example 3: the stability of the approximate solution

Table 3: Example 3.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 2.42 × 10−2 30 2 3.13 × 10−2 2.00 × 10−3

1.00 × 10−4 1.08 × 10−3 30 3 3.13 × 10−2 2.00 × 10−6

1.00 × 10−6 4.02 × 10−4 30 4 4.69 × 10−2 2.00 × 10−9

We get an excellent agreement between the approximate solution and
the exact solution when the noise level δ = 10−4 and 10−6 as shown in
Figure 3. The results obtained by the proposed method are better than
the results given in [4]. The mean absolute errorMAE decreases as the
noise level decreases which shows the stability of the proposed method.
Our results are more stable with respect to the noise δ than the results
presented in [24]. The value of the parameter mnδ

is bounded by the
constant 30 when the noise level δ = 10−6 and κ = 0.3.
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• Example 4. (see [4], [10])

f4(t) =

{

1 − e−0.5t, 0 ≤ t < 10,
0, elsewhere.

F4(p) =

{

8 + 2e−5, p = 0,
1−e−10p

p − 1−e−(p+1/2)10

p+0.5 , p > 0.
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Figure 4: Example 4: the stability of the approximate solution

As in our example 3 when the noise δ = 10−4 and 10−6 are used, we
get a satisfactory agreement between the approximate solution and the
exact solution. Table 4 gives the results of the stability of the proposed
method with respect to the noise level δ. Moreover, the reconstruction
of the function f4(t) obtained by the proposed method is better than
the reconstruction of f4(t) shown in [4], and is comparable with the
double precision reconstruction obtained in [10].

Table 4: Example 4.
δ MAE mnδ

Iter. CPU time (seconds) anδ

1.00 × 10−2 1.59 × 10−2 30 2 3.13 × 10−2 2.00 × 10−3

1.00 × 10−4 8.26 × 10−4 30 3 9.400 × 10−2 2.00 × 10−6

1.00 × 10−6 1.24 × 10−4 30 4 1.250 × 10−1 2.00 × 10−9

In this example when δ = 10−6 and κ = 0.3 the value of the parameter
mnδ

is bounded by the constant 109 as shown in Table 4.

• Example 5. (see [2], [4], [8])
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f5(t) = 2/
√

3e−t/2 sin(t
√

3/2)

F5(p) =
1 − cos(10

√
3/2)e−10(p+0.5)

[(p + 0.5)2 + 3/4]
− 2(p+ 0.5)e−10(p+0.5) sin(10

√
3/2)√

3[(p + 0.5)2 + 3/4]
.
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Figure 5: Example 5: the stability of the approximate solution

Table 5: Example 5.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 4.26 × 10−2 30 3 6.300 × 10−2 2.00 × 10−3

1.00 × 10−4 1.25 × 10−2 30 3 9.38 × 10−2 2.00 × 10−6

1.00 × 10−6 1.86 × 10−3 54 4 3.13 × 10−2 2.00 × 10−9

This is an example of the damped sine function. In [2] and [8] the
knowledge of the exact data F (p) in the complex plane is required
to get the approximate solution. Here we only use the knowledge
of the discrete perturbed data Fδ(pj), j = 0, 1, 2, . . . ,m, and get a
satisfactory result which is comparable with the results given in [2]
and [8] when the level noise δ = 10−6. The reconstruction of the
exact solution f5(t) obtained by our method is better than this of the
method given in [4]. Moreover, our method yields stable solution with
respect to the noise level δ as shown in Figure 5 and Table 5 show. In
this example when κ = 0.3 the value of the parameter mnδ

is bounded
by 54 for the noise level δ = 10−6 (see Table 5).

• Example 6. (see [10])
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f6(t) =







t, 0 ≤ t < 1,
3/2 − t/2, 1 ≤ t < 3,
0, elsewhere.

F6(p) =

{

3/2, p = 0,
1−e−p(1+p)

p2 + e−3p+e2p(2p−1)
2p2 , p > 0.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
exact sol

δ =10−2

δ=10−4

δ=10−6

Figure 6: Example 6: the stability of the approximate solution

Table 6: Example 6.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 4.19 × 10−2 30 2 4.700 × 10−2 2.00 × 10−3

1.00 × 10−4 1.64 × 10−2 32 3 9.38 × 10−2 2.00 × 10−6

1.00 × 10−6 1.22 × 10−2 54 4 3.13 × 10−2 2.00 × 10−9

Example 6 represents a class of piecewise continuous functions. ¿From
Figure 6 the value of the exact solution at the points where the function
is not differentiable can not be well approximated for the given levels
of noise by the proposed method. When the noise level δ = 10−6, our
result is comparable with the results given in [10]. Table 6 reports
the stability of the proposed method with respect to the noise δ. It
is shown in Table 6 that the value of the parameter m generated by
the proposed adaptive stopping rule is bounded by the constant 54 for
the noise level δ = 10−6 and κ = 0.3 which gives a relatively small
computation time.

• Example 7. (see [10])
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f7(t) =







−te−t − e−t + 1, 0 ≤ t < 1,
1 − 2e−1, 1 ≤ t < 10,
0, elsewhere,

F7(p) =

{

3/e− 1 + 9(1 − 2/e), p = 0,

e−1−p e1+p−e(1+p)2+p(3+2p)
p(p+1)2

+ (e− 2)e−1−p−10p e10p−ep

p , p > 0.
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Figure 7: Example 7: the stability of the approximate solution

Table 7: Example 7.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 1.52 × 10−2 30 2 4.600 × 10−2 2.00 × 10−3

1.00 × 10−4 2.60 × 10−3 30 3 9.38 × 10−2 2.00 × 10−6

1.00 × 10−6 2.02 × 10−3 30 4 3.13 × 10−2 2.00 × 10−9

When the noise level δ = 10−4 and δ = 10−6, we get numerical results
which are comparable with the double precision results given in [10].
Figure 7 and Table 7 show the stability of the proposed method for
decreasing δ.

• Example 8. (see [3], [4])

f8(t) =

{

4t2e−2t, 0 ≤ t < 10,
0, elsewhere.

F8(p) =
8 + 4e−10(2+p)[−2 − 20(2 + p) − 100(2 − p)2]

(2 + p)3
.
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Figure 8: Example 8: the stability of the approximate solution

The results of this example are similar to the results of Example 3. The
exact solution can be well reconstructed by the approximate solution
obtained by our method at the levels noise δ = 10−4 and δ = 10−6

(see Figure 8). Table 8 shows that the MAE decreases as the noise
level decreases which shows the stability of the proposed method with
respect to the noise. In all the levels of noise δ the computation time
of the proposed method in obtaining the approximate solution are
relatively small. We get better reconstruction results than the results
shown in [4]. Our results are comparable with the results given in [3].

Table 8: Example 8.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 2.74 × 10−2 30 2 1.100 × 10−2 2.00 × 10−3

1.00 × 10−4 3.58 × 10−3 30 3 3.13 × 10−2 2.00 × 10−6

1.00 × 10−6 5.04 × 10−4 30 4 4.69 × 10−2 2.00 × 10−9

• Example 9. (see [18])

f9(t) =

{

5 − t, 0 ≤ t < 5,
0, elsewhere,

F9(p) =

{

25/2, p = 0,
e−5p+5p−1

p2 , p > 0.

As in Example 6 the error of the approximate solution at the point
where the function is not differentiable dominates the error of the
approximation. The reconstruction of the exact solution can be seen
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Figure 9: Example 9: the stability of the approximate solution

in Figure 9. The detailed results are presented in Table 9. When the
double precision is used, we get comparable results with the results
shown in [18].

Table 9: Example 9.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 2.07 × 10−1 30 3 6.25 × 10−2 2.00 × 10−6

1.00 × 10−4 7.14 × 10−2 32 4 3.44 × 10−1 2.00 × 10−9

1.00 × 10−6 2.56 × 10−2 54 5 3.75 × 10−1 2.00 × 10−12

• Example 10. (see [5])

f10(t) =

{

t, 0 ≤ t < 10,
0, elsewhere,

F10(p) =

{

50, p = 0,
1−e−10p

p2 − 10e−10p

p , p > 0.
.

Table 10: Example 10.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 2.09 × 10−1 30 3 3.13 × 10−2 2.00 × 10−6

1.00 × 10−4 1.35 × 10−2 32 4 9.38 × 10−2 2.00 × 10−9

1.00 × 10−6 3.00 × 10−3 54 4 2.66 × 10−1 2.00 × 10−9
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Figure 10: Example 10: the stability of the approximate solution

Table 10 shows the stability of the solution obtained by our method
with respect to the noise level δ. We get an excellent agreement be-
tween the exact solution and the approximate solution for all the noise
levels δ as shown in Figure 10.

• Example 11. (see [5], [16])

f11(t) =

{

sin(t), 0 ≤ t < 10,
0, elsewhere,

F11(p) =
1 − e−10p(p sin(10) + cos(10))

1 + p2
.
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Figure 11: Example 11: the stability of the approximate solution

Here the function f11(t) represents the class of periodic functions. It is
mentioned in [16] that oscillating function can be found with accept-
able accuracy only for relatively small values of t. In this example the
best approximation is obtained when the noise level δ = 10−6 which is

33



comparable with the results given in [5] and [16]. The reconstruction
of the function f11(t) for various levels of the noise δ are given in Fig-
ure 11. The stability of the proposed method with respect to the noise
δ is shown in Table 11. In this example the parameter mnδ

is bounded
by the constant 54 when the noise level δ = 10−6 and κ = 0.3.

Table 11: Example 11.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 2.47 × 10−1 30 3 9.38 × 10−2 2.00 × 10−6

1.00 × 10−4 4.91 × 10−2 32 4 2.50 × 10−1 2.00 × 10−9

1.00 × 10−6 2.46 × 10−2 54 5 4.38 × 10−1 2.00 × 10−12

• Example 12. (see [3], [5])

f12(t) =

{

t cos(t), 0 ≤ t < 10,
0, elsewhere,

F12(p) =
(p2 − 1) − e−10p(−1 + p2 + 10p + 10p3) cos(10)

(1 + p2)2

+
e−10p(2p + 10 + 10p2) sin(10)

(1 + p2)2
.
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Figure 12: Example 12: the stability of the approximate solution

Here we take an increasing function which oscillates as the variable t
increases over the interval [0, 10). A poor approximation is obtained
when the noise level δ = 10−2. Figure 12 shows that the exact solution
can be approximated very well when the noise level δ = 10−6. The
results of our method are comparable with these of the methods given
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in [3] and [5]. The stability of our method with respect to the noise
level is shown in Table 12.

Table 12: Example 12.

δ MAE mnδ
Iter. CPU time (seconds) anδ

1.00 × 10−2 1.37 × 100 96 3 9.38 × 10−2 2.00 × 10−6

1.00 × 10−4 5.98 × 10−1 100 4 2.66 × 10−1 2.00 × 10−9

1.00 × 10−6 2.24 × 10−1 300 5 3.44 × 10−1 2.00 × 10−12

• Example 13.

f13(t) = e−t, F13(p) =
1

1 + p
.

Here the support of f13(t) is not compact. From the Laplace transform
formula one gets

F13(p) =

∫ ∞

0
e−te−ptdt =

∫ b

0
e−(1+p)tdt+

∫ ∞

b
e−(1+p)tdt

=

∫ b

0
f13(t)e

−ptdt+
e−(1+p)b

1 + p
:= I1 + I2,

where δ(b) := e−b. Therefore, I2 can be considered as noise of the data
F13(p), i.e.,

F δ
13(p) := F13(p) − δ(b), (128)

where δ(b) := e−b. In this example the following parameters are used:
d = 2, κ = 10−1 for δ = e−5 and κ = 10−5 for δ = 10−8, 10−20

and 10−30. Table 13 shows that the error decreases as the parameter b
increases. The approximate solution obtained by the proposed method
converges to the function f13(t) as b increases (see Figure 13).
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Table 13: Example 13.

b MAE mδ Iter CPU time (seconds)

5 1.487 × 10−2 2 4 3.125 × 10−2

8 2.183 × 10−4 2 4 3.125 × 10−2

20 4.517 × 10−9 2 4 3.125 × 10−2

30 1.205 × 10−13 2 4 3.125 × 10−2
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Figure 13: Example 13: the stability of the approximate solution

4 Conclusion

We have tested the proposed algorithm on the wide class of examples con-
sidered in the literature. Using the rule (63) and the stopping rule (87),
the number of terms in representation (73), the discrete data Fδ(pj), j =
0, 1, 2, . . . ,m, and regularization parameter anδ

, which are used in comput-
ing the approximation f δ

m(t) (see (73)) of the unknown function f(t), are
obtained automatically. Our numerical experiments show that the computa-
tion time (CPU time) for approximating the function f(t) is small, namely
CPU time ≤ 1 seconds, and the proposed iterative scheme and the proposed
adaptive stopping rule yield stable solution with respect to the noise level δ.
The proposed method also works for f without compact support as shown
in Example 13. Moreover, in the proposed method we only use a simple
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representation (73) which is based on the kernel of the Laplace transform
integral, so it can be easily implemented numerically.
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