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1 Introduction

Consider independent marks X1,X2, . . . sampled from the uniform distribution in Qd = [0, 1]d.
We define a mark Xn to be a chain record if Xn breaks the last chain record in X1, . . . ,Xn−1.
More precisely, record values and record indices are introduced recursively, by setting T1 =
1, R1 = X1 and

Tk = min{n > Tk−1 : Xn ≺ Rk−1} , Rk = XTk
, k > 1 .

Here, ≺ denotes the standard strict partial order on R
d defined in terms of component-wise

orders by

x = (x(1), . . . , x(d)) ≺ y = (y(1), . . . , y(d)) iff x 6= y and x(i) ≤ y(i) for i = 1, . . . , d .

It is easy to see that, in any dimension d, the terms of (Tk) are indeed well defined for all k,
that is the chain records occur infinitely many times.

The term chain record is chosen to stress the most straightforward ‘greedy’ method of construct-
ing a chain in a random partial order. This notion of multidimensional record has not been
explored so far, although the definition is an obvious restatement of the classical recursive def-
inition of a strict lower record (1; 37). The point advocated here is that the chain records are
closer relatives to the classical univariate records than various other types of multidimensional
records studied in the literature (4; 5; 13; 19; 20; 21; 26; 30; 31; 32; 34; 35). Apart from the
theory of extreme values, the chain records are of interest in some other contexts, like search
trees (14; 17), partially exchangeable partitions (38) and fragmentation processes (7). We shall
exploit these connections to analyse the frequency of chain records and related properties of
their values.

The chain records are intermediate between two other types of multidimensional records. We
say that a strong record occurs at index n if either n = 1, or n > 1 and

Xn ≺ Xj for j = 1, . . . , n − 1.

In the terminology of partially ordered sets, a strong record Xn is the least element in the point
set {X1, . . . ,Xn}. Since repetitions in each component have probability zero, Xn is a strong
record if and only if there is a strict lower record in each of d components, that is there are d
marginal records simultaneously. We say that a weak record occurs at index n if either n = 1,
or n > 1 and

Xj 6≺ Xn for j = 1, . . . , n − 1.

A weak record Xn is a minimal element in the set {X1, . . . ,Xn}. Obviously, each strong record
is a chain record. Also, each chain record is a weak record, as it follows easily by induction from
transitivilty of the relation ≺. Thus, denoting Nn,Nn and Nn the counts of strong, weak and
chain records among the first n marks, respectively, we have

Nn ≤ Nn ≤ Nn .

To illustrate, for the two-dimensional configuration of points in Figure 1 the weak records occur
at times 1, 2, 3, 5, 6, 7, 8, 9, the strong records occur at times 1, 8, the marginal records occur
at times 1, 2, 3, 5, 6, and the chain records occur at times 1, 5, 8.
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Figure 1: Chain records in the square

Clearly, all three types of records coincide in dimension one, but for d > 1 they are very different.
For instance, unlike two other types, the chain records are sensitive to arrangement of marks in
the sequence: a permutation of X1, . . . ,Xn−1 may destroy or create a chain record at index n.
To show quantitative differences we shall compare how often the records of different kinds may
occur.

Recall that in dimension d = 1 the question about the frequency of records is settled by the
Dwass-Rényi lemma (8, Lemma 5.1), which states that the indicators of records In = 1(Nn >
Nn−1) are independent, with probability pn = P(In = 1) = 1/n for a record at index n. This
basic fact can be concluded by combinatorial arguments from exchangeability and uniqueness of
the minimum among n sample points. It follows then in a standard way that Nn is asymptotically
Gaussian with both mean and variance asymptotic to log n.

Properties of the strong-record counts for sampling from Qd are also rather simple. By indepen-
dence of the marginal rankings we have a representation N n = I 1 + . . . + I n with independent
Bernoulli indicators and p

n
:= P(I n = 1) = n−d. Thus

E N n =

n∑

j=1

1

jd
.

For d > 1 the series
∑

p
n

converges, hence the total number of the strong records is finite with
probability one. This implies that N n converge almost surely to some random variable which is
not Gaussian.

Counting the weak records is a more delicate matter since the indicators In = 1(Nn > Nn−1) are
not independent. However, there is a simple device to reduce counting the weak records to known
results about the minimal points. To this end, let ξ1 < . . . < ξn be n uniform order statistics,
independent of the Xj ’s. Observe that the sequence (X1, ξ1), . . . , (Xn, ξn) is distributed like a
uniform sample of n points from Qd+1, arranged by increase of the last coordinate. A minute
thought shows that Xj (j ≤ n) is a weak record if and only if (Xj , ξj) is a minimal point among
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n points in d + 1 dimensions. Using this correspondence and (4, Equation (3.39)) we have

E [Nn] =
∑

1≤j1≤...≤jd≤n

1

j1 · · · jd
∼

1

d!
(log n)d ,

(by exchangeability, npn = E [Nn]). Similarly, from the results in (5) we can conclude that
the variance Var [Nn] is of the same order (log n)d, and that Nn is asymptotically Gaussian.
Asymptotic expansions of the variance of the number of minimal points are given in (3).

Thus the strong records are much more rare and the weak records are much more frequent than
the classical records. In this paper we show that, as far as the frequency is concerned, the chain
records in any dimension d are more in line with the classical records:

Proposition 1. For sampling from Qd with uniform distribution the number of chain records
Nn is approximately Gaussian with moments

E [Nn] ∼ d−1 log n , Var [Nn] ∼ d−2 log n .

The CLT will be proved in Section 3. Above that, we will derive exact and asymptotic formulas
for the probability of a chain record pn = P(Nn > Nn−1) and will discuss some point-process
scaling limits, generalizing that in the one-dimensional case.

The counting results remain the same if sampling from the uniform distribution in Qd is replaced
by sampling from any continuous product distribution in R

d. The situation changes radically for
sampling from more general probability measures µ on R

d, since the properties of record counts
are no longer ‘distribution free’. For instance, p

n
∼ cn−2/(1+ρ)(log n)−ρ/ρ+1 for the bivariate

correlated Gaussian distribution (26, p. 13) (in which case the total number of strong records is
finite), while p

n
∼ c/n for the bivariate Cauchy distribution (20, p. 515) (in which case the total

number of strong records is infinite). The distribution of Nn for various classes of measures µ
was studied e.g. in (5; 6; 20; 33).

More generally, one can define records for sampling from some probability space (X ,F , µ) en-
dowed with a strict partial order ≺. In these general terms it is easy to give a criterion for there
to be infinitely many chain records. Also, Proposition 1 and scaling limit results generalize for a
class of sampling spaces which possess a self-similarity property, versions of which were exploited
in a number of related contexts (12; 14; 24).

2 The heights at chain records and stick-breaking

For x ∈ Qd the quadrant Lx := {y ∈ Qd : y ≺ x} is the lower section of the partial order at x.
The height h(x) is the measure of Lx, which in the case of uniform distribution under focus is
equal to the product of coordinates. The height is a key quantity to look at, because the heights
at chain records determine the sojourns Tk+1−Tk (which may be also called inter-record times).
Let Hk = h(Rk) be the height at the kth chain record. Because a new chain record Rk+1 is
established as soon as LRk

is hit by some mark, we have, exactly as in the classical case (8,
Theorem 4.1):

Lemma 2. Given the sequence (Hk) the sojourns Tk+1 − Tk are conditionally independent,
geometrically distributed with parameters Hk, k = 1, 2, . . .
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Note that we can express the record counts and indicators through (Tk) as

Nn = #{k : Tk ≤ n}, In = 1(n ∈ {Tk; k = 1, 2, . . .}), (1)

which implies that the occurences of the chain records are completely determined by the law of
(Hk). Note also that Nn ≥ k is equivalent to Tk ≤ n. The lemma has the following elementary
but important consequence.

Corollary 3. Given (Hk), the conditional law of (In) is the same as for the classical records
from Q1 with the uniform distribution.

The heights at chain records undergo a multiplicative renewal process, sometimes called stick-
breaking. Define random variables W1,W2,W3, . . . by setting

Hk = W1 · · ·Wk , k = 1, 2, . . . (2)

Lemma 4. The random variables W1,W2,W3, . . . are independent replicas of a random variable
W := H1.

Proof. Each lower section Lx, viewed as a partially ordered probability space with normalized
Lebesgue measure is isomorphic to Qd (via a coordinate-wise scale transformation). Hence all
ratios Hk+1/Hk are i.i.d.

Explicitly, the density of W is

P(W ∈ ds) =
| log s|d−1

(d − 1)!
ds , s ∈ [0, 1], (3)

and the Mellin transform is
g(λ) := E [W λ] = (λ + 1)−d . (4)

as follows by noting that H1 is the product of d independent uniform variables.

It is an easy exercise to check for small sample sizes that the In’s are not independent for d > 1,
in contrast to the case d = 1. Thus for W with uniform distribution the independence holds, and
for W with density (3) (d > 1) not. This motivates a more general question of characterizing all
distributions for W which force independence of the indicators. Formally, let (Hk) be a stick-
breaking sequence (2), with Wj’s being independent copies of an arbitrary variable W assuming
values in ]0, 1[ . Let (Tk) be conditionally independent and geometric, as in Lemma 2, and define
indicators by (1).

Proposition 5. The indicators I1, I2, . . . are independent if and only if for some θ > 0 the
variable W has beta(θ, 1) density

P(W ∈ ds) = θsθ−1ds , 0 < s < 1.

In this case P(In = 1) = θ/(θ + n − 1).
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Proof. Let vn = P(In = 0), un = 1 − vn. The ‘if’ part follows from the well-known sequential
description of the Ewens partition (39).

To prove the ‘only if’ part start by observing that by Lemma 2 and from the assumption of
independence of the indicators

P((I1, . . . , In) = (1, 0, . . . , 0)) = E[(1 − H1)
n−1] = v2 · · · vn, n ≥ 1, (5)

P((I1, . . . , In) = (1, 0, . . . , 0, 1, 1)) = E[(1 − H1)
n−3H1H2] = v2 · · · vn−1un−1un, n ≥ 3. (6)

By independence of W1 = H1, W2 = H2/H1 and W1 =d W2 the middle expression in (6) can be
factored as

E

[
(1 − H1)

n−3H2
1

H2

H1

]
= E

[
(1 − H1)

n−3H2
1

]
E[H1].

This is expanded using H2
1 = 1 − 2(1 − H1)

2 + (1 − H1)
2 and H1 = 1 − (1 − H1) and evaluated

by (5). Upon simplification (6) yields the identity

u2un−1 = un(u2 + un−1 − u2un−1), n ≥ 3.

For u2 strictly between 0 and 1, the factor at un is positive thus (un, n ≥ 2) is uniquely
determined by u2. Setting u2 = θ/(θ + 1) the recursion is solved by un = θ/(θ + n − 1). 2

3 Random partitions and the CLT

The cube Qd is decomposed in disjoint layers Q \ LR1
, LR1

\ LR2
, . . .. We define an ordered

partition Π of the set N in disjoint nonempty blocks by assigning two integers i, j to the same
block of the partition if and only if Xi, Xj fall in the same layer. The blocks are ordered
by increase of their minimal elements, which are T1, T2, . . .. For instance, for the configura-
tion of points in Figure 1 the partition restricted to the set of 10 integers has three blocks
{1, 2, 3, 4, 6, 10}, {5, 7, 9}, {8}. The partition Π is partially exchangeable, as introduced in (38),
which means that for each n the probability of each particular value of Π|[n] depends only on
the sequence of sizes of blocks of Π|[n], where [n] := {1, . . . , n}. The sequence of sizes can be
arbitrary composition (ordered partition) of integer n (it is (6, 3, 1) in the above example). The
number of chain records Nn is equal to the number of blocks of Π|[n].

More generally, a partition Π can be derived from arbitrary decreasing sequence of random
variables (Hk) with values in ]0, 1[ , as suggested by Corollary 3. Let (Uj) be a i.i.d. sequence of
[0, 1] uniform points, independent of (Hk). We shall produce a transformed sequence (Uj) | (Hk)
by replacing some of the terms in (Uj) by the Hk’s. Replace U1 by H1. Do not alter U2, U3, . . .
as long as they do not hit [0,H1[ ; then replace the first uniform point hitting the interval [0,H1[
by H2. Inductively, as H1, . . . ,Hk got inserted, keep on screening uniforms until first hitting
[0,Hk[ , then insert Hk+1 in place of the uniform point that caused the hit, and so on. Eventually
all Hk’s will enter the resulting sequence. It is easy to see that given (Hk) the distribution of
(Uj) | (Hk) is the same as the conditional distribution of (Uj) given the subsequence of its record
values (Hk). Now, the interval ]0, 1] is broken into subintervals ]Hk+1,Hk] (with H0 := 1), and
the partition Π is defined by assigning integers a, b to the same block if and only if the ath and
the bth member of the sequence (Uj) | (Hk) belong to the same subinterval.
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In the classical case, (Hk) is the stick-breaking sequence with uniform factor W , and we have
(Uj) | (Hk) =d (Uj), so the insertion does not alter the law of the uniform sequence. In this
case Π is the exhangeable partition whose law corresponds to the Ewens sampling formula with
parameter θ = 1. If we take stick breaking with the beta factor W as in Proposition 5 we
obtain the general Ewens partiton, which can be characterized by the property of independent
indicators (36) (up to two trivial cases obtained by sending θ to 0 or ∞, respectively).

The construction of (Uj) | (Hk) and Π does not impose any constraints on the law of the sequence
(Hk), which can be an arbitrary nonincreasing sequence (the induced Π is then the most general
partially exchangeable partition (38)). With this in mind, we shall take a more abstract approach
and digress from the geometric description of records. Suppose (Hk) is defined by stick-breaking
(2), with a generic random factor W assuming values in ]0, 1[ . Let (Tk) be as in Lemma 2 and
define Nn by (1). As above, Tk’s and Nn can be interpreted in terms of a random partition Π.

Proposition 6. Suppose W has finite logarithmic moments

m = E [− log W ], σ2 = Var [− log W ].

Then for n → ∞ the variable Nn is asymptotically Gaussian with moments

E [Nn] ∼
1

m
log n , Var [Nn] ∼

σ2

m3
log n .

We also have the strong law

Nn ∼
1

m
log n a.s.

for which only m < ∞ is required.

Proof. Our strategy is to show that Nn is close to Kn := max{k : Hk > 1/n}. By the re-
newal theorem (16) Kn is asymptotically Gaussian with the mean m−1 log n and the variance
σ2m−3 log n because Kn is just the number of epochs on [0, log n] of the renewal process with
steps − log Wj.

By the construction of (Uj) | (Hk), we have a dichotomy: Un ∈ ]Hk,Hk−1] implies that either Un

will enter the transformed sequence or will get replaced by some Hi ≥ Hk. Let Un1 < . . . < Unn

be the order statistics of U1, . . . , Un. It follows that

(i) if Unj > Hk then Nn ≤ k + j,

(ii) if Unk < Hk then Nn ≥ k.

Let ξn be the number of uniform order statistics smaller than 1/n. By definition, HKn+1 <
1/n < HKn

, hence Kn and ξn are independent and ξn is binomial(n, 1/n). By (i), we have
Nn ≤ Kn + ξn where ξn is approximately Poisson(1), which yields the desired upper bound.

Now consider the threshold sn = (log n)2/n and let Jn := max{k : Hk > sn}. By (ii), if
the number of order statistics smaller than sn is at least Jn then Nn ≥ Jn. Because log n ∼
log n − 2 log log n the index Jn is still asymptotically Gaussian with the same moments as Kn.
On the other hand, the number of order statistics smaller than sn is asymptotically Gaussian
with moments about (log n)2. Hence elementary large deviation bounds imply that Nn ≥ Jn

with probability very close to one. This yields a suitable lower bound, hence the CLT. Along
the same lines, the strong law of large numbers follows from Nn ∼ Kn.
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Similar limit theorems have been proved by other methods for the number of blocks of exchange-
able partitions (25), and for the length of a size-biased path in search trees (14; 18).

Proposition 1 follows as an instance of Proposition 6 by computing the logarithmic moments of
the density (3)

m = E [− log W ] = −g′(0) = d , σ2 = Var [− log W ] = g′′(0) − g′(0)2 = d .

4 Poisson-paced records

The probability pn of a chain record at index n is equal to the mean height of the last chain
record before n. In terms of the quad-tree, pn is the probability that Xn belongs to the path
in the direction of the negative quadrant. To compute pn we shall exploit the same kind of a
continuous time process as in (24), which may be interpreted as the process of a tagged particle
in a fragmentation with self-similarity index 1 (7). See (14; 15; 17; 18) for other approaches to
functionals of quad-trees.

Let (τn) be the increasing sequence of points of a homogeneous Poisson point process (PPP) on
R+, independent of the marks (Xn). The sequence ((Xn, τn), n = 1, 2, . . .) is then the sequence
of points of a homogeneous PPP in Qd × R+ in the order of increase of the time component,
which now assumes values in the continuous range R+. Let N̂t be the number of chain records
and Bt the height of the last chain record on [0, t], that is

N̂t = max{k : τTk
< t} , Bt = H bNt

.

Clearly, (Bt) is the predictable compensator for (N̂t), in particular

E

[∫ t

0
Bsds

]
= E [N̂t] .

The effect of poissonization on the process of records amounts to just replacing geometric so-
journs in Lemma 2 by exponentials. We again digress from the detailed geometric description,
and construct a process (Bt) by first letting (Hk) to be a sequence of distinct visited states and
then requiring that the sojourns in these states be conditionally independent, exponential(Hk).
Assuming further that (Hk) is derived by stick-breaking (2) the process (Bt) is Markov time-
homogeneous with a very simple type of behaviour. Given Bt = b the process remains in state
b for some rate-b exponential time and then jumps to a new state bW , with W a stereotypical
random factor with values in ]0, 1[ .

Immediate from this description is the following self-similarity property: the law of (Bt) with
initial state B0 = b is the same as the law of the process (bBbt) with B0 = 1. In this form the
process is well defined for arbitrary initial state b > 0 and arbitrary W with values in the open
interval. See (23) for features of this process related to the classical records and (7) for more
general self-similar (also called semi-stable) processes derived from subordinators. Proposition
6 translates literally as a CLT for the number of jumps of (Bt) within a large time interval
(in the language of (7), this is the number of dislocations of a tagged particle in a self-similar
fragmentation process with finite dislocation measure).
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By the self-similarity of (Bt) the moments

mk(t) := E [Bk
t ]

satisfy a renewal-type equation

m′k(t) = −mk(t) + E [W kmk(tW )] .

The series solution to this equation with the initial value mk(0) = 1 is

mk(t) =
∞∑

k=0

(−t)k

k!

k−1∏

j=0

(1 − g(j + k)), (7)

with g(λ) = E[W λ], as one can check by direct substitution (see (10)).

By (9, Theorem 1) the random variables tBt converge, as t → ∞, in distribution and with all
moments to a random variable Y whose moments are given by

E [Y k] =
1

m

k−1∏

r=1

r

1 − g(r)
, k = 1, 2, . . . (8)

where m = −g′(0) = E[− log W ]. The law of Y is determined uniquely by the moments (8).
This variable has a ‘perpetuity series’ representation

Y =d E0W0 +

∞∑

k=1

Ek

k∏

j=0

Wj

where Ek’s are exponential, Wj ’s for j > 0 are as before, W0 has density

P(W0 ∈ ds) =
P(W ≤ s)

ms
ds , s ∈ [0, 1] (9)

(which is the stationary density for the stick-breaking process with factor W ) and all variables
are independent. Equivalently, we may write Y in the form of an exponential functional (11)

Y =

∫ ∞

0
e−St dt

for (St) a compound Poisson process with initial state S0 = − log W0 and the jumps distributed
like − log W .

Connecting discrete and continuous time models we have

m1(t) = e−t
∞∑

n=0

tn

n!
pn+1 ,

which in terms of the chain records is the poissonization identity saying that m1(t) is the prob-
ability that the first arrival after t is a chain record. This implies, upon equating coefficients of
the series,

pn =
n−1∑

k=0

(
n − 1

k

)
(−1)k

k−1∏

j=0

(1 − g(j + 1)) . (10)
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We remind that (10) with general g(λ) = E[W λ] yields the probability that n is the minimal
element in some block of Π, for Π a partition of N introduced in Section 3,

Specializing to the chain records from Qd we substitute g(λ) = (λ + 1)−d in the above formulas.
Factoring

1 − g(j + k) =

d∏

r=1

j + k + 1 − e2πir/d

j + k + 1

we see that the series (7) is a generalized hypergeometric function of the type dFd. Formula (8)
becomes

E[Y k] =
(k!)d+1

kd

k∏

r=2

1

rd − 1
. (11)

The law of Y may be considered as a kind of extreme-value distribution, because it is the limit
distribution of the height at the chain record last before time n. In the case d = 1 we recover
well-known Y =d E with E standard exponential, and for d = 2 we get Y =d EU with E and
U independent exponential and uniform random variables.

For d = 1 we obtain from (10) the familiar pn = 1/n, and for d = 2 we obtain surprisingly
simple expression pn = 1/(2n) (for n > 1). For d > 2 the formulas for pn do not simplify. The
depoissonization of the k = 1 instance implies, quite expectedly,

pn ∼
1

dn
, as n → ∞ .

Formula (10) can be compared with the analogous formulas

p
n

= g(n − 1), pn =
n−1∑

k=0

(
n − 1

k

)
(−1)kg(k)

for the occurences of strong and weak records. The last two follow by elementary combinatorics,
but we do not have a direct combinatorial argument for (10).

5 Scaling limits

Let b > 0 be a scaling parameter which we will send to ∞. For {(Rk, Tk); k = 1, 2, . . .} the
bivariate point process of record values and record times induced by sampling from Q1, the
scaled process {(bRk, Tk/b), k = 1, 2, . . .} has a weak limit, which can be identified with the
random set of minimal points of a homogeneous PPP in R

2
+. Marginally, {bRk} and {Tk/b}

both converge to a scale-invariant PPP on R+ with intensity dx/x. See (2; 29) on properties of
the scale-invariant PPP.

Consider now the point process {(Hk, Tk), k = 1, 2, . . .} induced by the general stick-breaking
(2). Applying (9, Theorem 1) yields:

Proposition 7. If m = E[− log W ] < ∞ then the scaled point process {(bHk, Tk/b), k =
1, 2, . . .} has a weak limit R as b → ∞. The limiting point process R in R

2
+ is invariant under

hyperbolic shifts (s, t) 7→ (bs, t/b) (with b > 0), and the coordinate projections of R are scale-
invariant point processes.
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A more explicit construction of R is the following. Let H be the unique scale-invariant (that
is, satisfying bH =d H, b > 0) point process on R+, whose restriction to [0, 1] has the same
distribution as {W0,W0W1,W0W1W2, . . .} where the Wj ’s are independent, Wk =d W and W0

has the stationary density (9). Let {ξk, k ∈ Z} be the points of H which may be labelled so
that ξ0 = W0 is the maximum point of H ∩ [0, 1], and ξ−1 > 1. Assign to each ξk an arrival
time σk :=

∑k
i=−∞Ei/ξi where the Ei’s are independent standard exponential variables, also

independent of H. Then let R := {(ξk, σk), k ∈ Z}. The hyperbolic invariance of R is obvious
from the construction and the scale invariance of H.

Next is a counterpart of Proposition 5.

Proposition 8. If one of the cooordinate projections of R is a Poisson process, then the law
of W is beta(θ, 1) for some θ > 0, in which case both projections are Poisson processes with
intensity θds/s, s > 0.

Proof. If the vertical coordinate projection of R is Poisson then the intensity is θds/s for some
θ > 0, in consequence of scale invariance, but then W is beta(θ, 1) and the horizontal projection
is the same Poisson, as is known in connection with the Ewens partition. The second part of
the claim follows by observing that the law of the horizontal projection uniquely determines the
law of W . Indeed, let ξ1 < ξ2 be two leftmost points of the horizontal projection on [1,∞[ .
By the construction of R we have ξ1/ξ2 =d (E1/E2)W , with exponential E1, E2 an E1, E2,W
independent. Hence the law of W can be recovered from that of R. 2

In application to the chain records Proposition 7 guarantees point-process convergence of the
heights and record times, but tells a little about the vector values of records. Observe that for
the values of chain records we have the component-wise representation

R
(j)
k =d U

(j)
1 · · ·U

(j)
k , j = 1, . . . , d ; k = 1, 2, . . .

with independent uniform U
(j)
k ’s. From this it is clear that each marginal process {bR

(j)
k , k =

1, 2, . . .} converges to the same scale-invariant PPP on R+. However, the vector point process
{bRk} converges, as b → ∞, to a degenerate limit in R

d
+ which lives on the union of the coordinate

axis (this follows because any level c/b is surpassed by one of the marginal {R
(j)
k }’s considerably

before the others).

As noted by Charles Goldie, the component-wise logarithmic transform

(− log(R
(1)
k ), . . . ,− log(R

(d)
k )), k = 1, 2, . . .

sends the chain records in Qd to the sequence of sites visited by a d-dimensional random
walk whose components are independent one-dimensional random walks with exponentially dis-
tributed increments. Equivalently, one can consider the upper chain records from the product
exponential distribution in d dimensions. In this regime, Rk/k converge almost surely to the
vector with unit coordinates and, subject to a suitable normalization, the process of record
values can be approximated by a d-dimensional Brownian motion.

777



6 Chain records from general random orders

Let (X ,F , µ,≺) be a probability space endowed with a measurable strict partial order ≺. The
measurability condition means that the graph of ≺ belongs to the product sigma-algebra F ⊗F ,
and it implies that the lower sections Lx = {y ∈ X : y ≺ x} are all measurable and that the
height h(x) = µ(Lx) is a measurable function from X to [0, 1]. To avoid measure-theoretical
pathologies like nonmeasurability of the diagonal we assume in the sequel that the space is
sufficiently regular; one can think e.g. of a Borel subset of some Euclidean space. In this general
setting, the chain records in a sample X1,X2, . . . from (X ,F , µ,≺) and the associated variables
Hk, Rk, Tk, In are defined in full analogy with that in Qd. We allow measures µ with atoms,
hence some marks in the sample may be repeated.

Each measurable subset A ⊂ X of positive measure inherits the structure of a partially ordered
probability space, endowed with the conditional measure µA := µ(·)/µ(A) and the height func-
tion hA(x) := µ(Lx ∩ A)/µ(A), x ∈ A. If A is a lower set, meaning that with each x ∈ A also
Lx ⊂ A, then hA(x) = h(x)/µ(A). Note that by transitivity each Lx is a lower set, and every
union of lower sets is a lower set.

The next lemma states that the height function restricted to the sample is strictly monotone.

Lemma 9. We have P((X1 ≺ X2) ∧ (h(X1) 6< h(X2)) = 0.

Proof. By transitivity, x ≺ y implies Lx ⊂ Ly and h(x) ≤ h(y) for almost all (x, y). Thus we
only need to show that the event X1 ≺ X2 excludes h(X1) = h(X2). Suppose this does not
hold, then P((X1 ≺ X2) ∧ (h(X1) = h(X2))) > 0 . Then by Fubini there is a set A of positive
measure such that for x ∈ A we have P((X1 ≺ x)∧ (h(X1) = h(x))) > 0 , and since in this event
LX1

⊂ Lx we have P((X1 ≺ x)∧(LX1
= Lx)) > 0 . By exchangeability the latter is also true with

X2 substituted for X1, hence by independence P((X1 ≺ x, X2 ≺ x) ∧ (LX1
= LX2

= Lx)) > 0
for almost all x ∈ A. This implies

P((X1 ∈ LX2
) ∧ (X2 ∈ LX1

)) = P((X1 ≺ X2) ∧ (X2 ≺ X1)) > 0 ,

which contradicts to the asymmetry of ≺.

It follows that (Hk) is strictly decreasing almost surely. Lemma 2 is still valid in the general
framework, but the law of (Hk) typically depends in a very complex way on the sampling space.
As the first instance, we discuss features of H1 and relate them to the properties of the chain
records. Introduce the distribution function

D(s) := P(H1 ≤ s) = P(h(X1) ≤ s) = µ{x ∈ X : h(x) ≤ s} , s ∈ [0, 1].

In a standard way, D is right-continuous with left limits, nondecreasing and satisfies D(1) = 1
and D(0) ≥ 0.

Proposition 10. The total number of chain records is almost surely infinite if and only if
D(0) = 0.

Proof. If D(0) = 0 the process (Xn) never enters the set {x ∈ X : h(x) = 0} hence each chain
record is eventually broken, and the sequence of chain records is infinite. If D(0) > 0 then with
positive probability h(X1) = 0 and the record process terminates at T1 = 1.
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Example 11. The distribution D may have jumps even when µ has no atoms. An example
of this situation is R

2 with the standard order and with the measure supported by the union
of the unit square and the segment connecting points (1, 0) and (2,−1), such that a half of the
mass is spread uniformly over the square and another half is spread uniformly over the segment.
Observe that D(0) = 1/2, with probability 1/2 the total number of chain records is infinite, and
with probability 1/2 it is finite, depending on whether X1 hits the square or the segment.

Lemma 12. The distribution function D is superdiagonal: D(s) ≥ s for s ∈ [0, 1].

Proof. We show first the continuity at 1. Suppose D(1)−D(1−) = α > 0 and let C = {x ∈ X :
h(x) = 1}. By Fubini and exchangeability

P((X2 6≺ X1) ∧ (X1 ∈ C)) = P((X1 6≺ X2) ∧ (X2 ∈ C)) = 0.

This readily implies

P((X1 ≺ X2) ∧ (X2 ≺ X1)) ≥ P((X1 ≺ X2) ∧ (X2 ≺ X1) ∧ (X1 ∈ C) ∧ (X2 ∈ C)) =

P((X1 ∈ C) ∧ (X2 ∈ C)) = α2 > 0.

This contradicts to the asymmetry of partial order, thus D(1) = D(1−).

Suppose now that s is a growth point for D. Then for every ǫ there is a set A ⊂ X of positive
measure such that h(x) ∈ [s − ǫ, s + ǫ] for x ∈ A. Hence

D(s + ǫ) = P(h(X2) ≤ s + ǫ) ≥ P(h(X2) ≤ h(X1) |X1 ∈ A) ≥ P(X2 ≺ X1 |X1 ∈ A) ≥ s − ǫ ,

and letting ǫ → 0 we obtain D(s) ≥ s.

It remains to exclude the possibility that D has a flat which ends with crossing the diagonal
by a jump. Suppose s − D(s−) > 0 for some s. Then B = {x ∈ X : h(x) ≤ s} is a lower
set of positive measure, whose height function hB has distribution with an atom at 1. This is
impossible by the first part of the argument.

Example 13. (minimal orders) For arbitrary superdiagonal D there exists an ordered proba-
bility space such that the distribution function of h(X1) is D. Indeed, as noted in (6, p. 85) for
the partial order on ([0, 1],B,dx) defined by

x ≺ y ⇐⇒ D(x) < y , for x, y ∈ [0, 1]. (12)

the distribution function of h(X1) is D, because Lx = [0,D←(x)[ . The relation defined by (12)
may be called a minimal order, since it is a minimal (in the sense of set-theoretic inclusion
modulo µ) partial order on ([0, 1],B,dx) with given distribution D for the height function. For
the minimal orders, the strong records coincide with the chain records, and the number of chain
records is finite or infinite depending on whether D(0) > 0 or D(0) = 0.

Example 14. The space of reals (R,B, µ,<) with arbitrary µ is isomorphic to a minimal
space in the previous example. The isomorphism is achieved by the probability transform x 7→
µ ] −∞, x]. If µ has no atoms then D(s) = s is the uniform distribution, and in general D is a
uniformized distribution (22), with the characteristic property that D(s−) = s for D-almost all
s ∈ [0, 1].
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Partially ordered probability spaces (X ,F ,≺, µ) for which D is uniformized have the char-
acteristic property that the event {X1 ≺ X2} coincides with {h(X1) < h(X2)}. In this
sense the height h plays the role of a ‘utility function’ representing the relation ≺ restricted
to the sample. Another characterization of this situation is that the relation ≈ defined by
x ≈ y ⇐⇒ (x 6≺ y) ∧ (y 6≺ x) is transitive modulo µ.

There is a canonical minimal order ≺ on ([0, 1],B,dx) (see previous example) related to
(R,B, µ,<). For x, y ∈ [0, 1] let x ≺ y iff D(x) < D(y). This makes two distinct point x
and y incomparable if they belong to the same flat of D. Each flat of D corresponds to some
atom of µ, and has the length equal to the size of this atom.

7 Comparing the records of distinct types

In the setting of Section 6 one can define also weak and strong records, as in the Introduction
for Qd. Let p

n
, pn, pn be the probabilities that a weak, a strong or a chain record occurs at time

n, and let Nn,Nn, Nn be the number of records among the first n marks for each of these types,
respectively. Obviously,

E [Nn] =
n∑

j=1

p
n
, E [Nn] =

n∑

j=1

pn, E [Nn] =
n∑

j=1

pn .

The expected total number of records of each kind in the infinite sequence X1,X2, . . . is given
by the corresponding infinite series. For weak and strong records, the divergence of the series
is a necessary and sufficient condition that infinitely many records occur almost surely, see (30,
Theorem 2.1). The probabilities p

n
, pn and pn are nonincreasing with n, as it follows by observing

that a record occurs when Xn hits a certain subset of X determined by X1, . . . ,Xn−1, and these
subsets are nonincreasing.

By definitions and exchangeability Nn ≤ Nn ≤ Nn,

p
n
≤ pn ≤ pn and p

n
≤ 1/n ≤ pn . (13)

Complementing these relations we will show the inequality

E [Nn] ≤

n∑

j=1

1/j , (14)

which makes a sense of the statement that the chain records are more rare than the standard
records from Q1. As a nice exercise, the reader is suggested to prove (14) for strict lower records
in a sample from some discrete distribution on R. For the probability of a weak record we have
the integral representation

pn =

∫ 1

0
(1 − s)n−1 dD(s) , (15)

which follows by conditioning on h(Xn) = s. A similar representation exists for p
n

in terms of
the distribution of the upper section of ≺ at a random mark X1, but there is no general simple
formula for pn.
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Introduce the ratios
Wk = Hk/Hk−1 , k = 1, 2, . . .

with the convention that H0 = 1 and Hk = Wk = 0 if the number of chain records is less than k.
Thus Hk = W1 · · ·Wk. Let (Uk) be a sequence of independent uniform [0, 1] random variables.

Lemma 15. It is possible to define (Hk) and (Uk) on the same probability space to achieve
Wk ≤ Uk hence Hk ≤ U1 · · ·Uk for all k = 1, 2, . . ..

Proof. Let Dx be the distribution of height for the lower set Lx with conditional measure
µ(·)/µ(Lx). If µ(Lx) = 0 we let Dx ≡ 1. Let D← and D←x be the generalized inverses of D and
Dx, respectively. By Lemma 12 we have Dx(s) ≥ s thus D←x (u) ≤ u, u ∈ [0, 1]. Let (Xn) and
(Uk) be independent. Define W ′

1 := D←(U1) and W ′
k+1 := D←Rk

(Uk+1) for k ≥ 1. By properties
of the quantile transform we have the distributional identity

W ′
k+1 |Rk=dWk+1 |Rk ,

and the same is true for conditioning on R1, . . . , Rk since (Rk) is Markovian. It follows by
induction in k that (W ′

k)=d(Wk). Because W ′
k ≥ Uk we are done. 2

Proposition 16. For N∗n the number of classical records from Q1 and Nn the number of chain
records from a general space X we have

P(Nn ≥ k) ≤ P(N∗n ≥ k).

In particular, (14) is true.

Proof. Let H∗k = U1 · · ·Uk, H∗0 = 1. Suppose that (T ∗k ) is such that given (H∗k) all T ∗k+1 −T ∗k are
independent geometric(H∗k ), and T ∗1 = 1. Define N∗n := max{k : T ∗k ≤ n}. Then (H∗k), (T ∗k ) and
N∗n may be identified with the record-values, records times and record counts for the standard
records from Q1. In the setup of Lemma 15 we have Hk ≤ H∗k , hence T ∗k is stochastically smaller
than Tk, hence each N∗n is stochastically larger than Nn.

8 Self-similar spaces

The special feature which makes the occurences of chain records from Qd lending itself to study
is the stick-breaking representation (2) with i.i.d. factors, which in turn follows from a self-
similarity property of the cube. This property holds for a wider class of spaces introduced
below.

We define a partially ordered probability space (X ,F , µ,≺) to be self-similar if for almost all
x ∈ X the conditioned space (Lx,F|Lx

, µLx
,≺ |Lx

) is isomorphic to the whole space (X ,F , µ,≺).
The isomorphism is understood as a measure-preserving bijection φ defined almost everywhere
and such that the events {X1 ≺ X2} and {φ(X1) ≺ φ(X2)} coincide up to a zero event. For a
self-similar space the factors in (2) are i.i.d. copies of W whose distribution is D.

Bollobás and Brightwell (12) introduced box-spaces with the property that all intervals 〈y, x〉 :=
{z ∈ X : y ≺ z ≺ x} (y ≺ x) are isomorphic to the whole space. Let o be the unique least
element of X (if X has no such element we attach o to the space), then Lx = 〈o, x〉. Thus our
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definition of self-similar space requires isomorphism of a smaller class of intervals, hence every
box-space is self-similar.

We demonstrate next various constructions of self-similar spaces.

Example 17. (Rd as a product space) The cardinal example is, of course, R
d with

coordinate-wise order and a continuous product distribution µ = ⊗d
j=1µ

(j). The transforma-

tion (x(1), . . . , x(d)) 7→ (µ(1)]−∞, x(1)], · · · , µ(d)]−∞, x(d)]) is an isomorphism with Qd, thus R
d

with such measure is indeed a self-similar space.

The family of self-similar spaces is closed under the operation of cartesian product, with the
product order defined analogously to the case Qd = [0, 1] × · · · × [0, 1].

Example 18. (discrete measures) For (zk) a decreasing sequence and 0 < p < 1, q = 1 − p
let µ =

∑∞
k=1 pqk−1δzk

, where δx is the Dirac mass at x. Clearly, h(zk) = qk. The probability
transform yields the measure of the same type, but with supporting sequence z′k = qk. The space
(R, <) with any such measure is self-similar, as it follows from the elementary properties of the
geometric distribution. Computing the moments m and σ2 is easy from the Mellin transform
g(λ) = pqλ/(1 − qλ+1). From the moments formula

E[Y k] =
k!

m

1 − qk

k
, m = − log q

follows that Y is a product of independent factors: exponential(1) and a variable with density
ds/(ms) s ∈ [q, 1]. For q → 1 the second factor degenerates and the distribution of Y converges
to exponential(1), as is intuitively clear since µ approaches the uniform distribution on [0, 1],
hence the records must be similar to that from Q1.

If (R,B, µ,<) is self-similar then µ is either continuous or it is geometric as in Example 18.
Indeed, applying the probability transform we reduce to the case µ[0, s] = D(s) of a uniformized
measure µ. From the fact that H2/H1 and H1 are i.i.d. and (27, Corollary 6.5) follows that the
support of µ is a multiplicatively regenerative set, but any such nonrandom set is either [0, 1] or
a geometric sequence, as is obvious from (27, Section 6).

Bunge and Goldie (8, p. 297) asked if the Ewens sampling formula with θ 6= 1 may be given
some interpretation in terms of records. In (28) an interpretation was given for arbitrary θ > 0
in terms of the classical records and a ‘Fα-model’ for independent (but not i.i.d.) marks. The
next example gives an interpretation in terms of suitable chain records, but only for 0 < θ ≤ 1.
By Lemma 12 the parameter values θ > 1 cannot appear in this way, since then beta(θ, 1) is
subdiagonal and cannot coincide with some height distribution.

Example 19. (unit square with a weird order) Consider the square [0, 1]2 with µ being the
product of the uniform distribution [0, 1] and a beta(β, 1) distribution (β > 0). Thus µ([0, x(1)]×
[0, x(2)]) = x(1)(x(2))β for x = (x(1), x(2)) ∈ [0, 1]2. Define the partial order

(x(1), x(2)) ≺ (y(1), y(2)) ⇐⇒ max(x(1), x(2)) < y(1).

Thus each Lx for x = (x(1), x(2)) ∈ [0, 1] is itself a square [0, x(1)[×[0, x(1)[, and appealing
to the elementary properties of the beta distributions we readily derive self-similarity of the
ordered sampling space. Noting that h(x) = (x(1))β+1 it follows that D(s) = s1/(1+β) is the
beta(1/(1 + β), 1) distribution. Proposition 5 applies with θ = 1/(β + 1), and the indicators of
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chain records are independent. If we view the sequence of n indicators as a composition of n (e.g.
1010000100 corresponds to (2, 5, 3)), then this composition follows the Ewens sampling formula
with parameter θ. The scaled point process of record times {Tk/n, k = 1, 2, . . .} converges to a
scale-invariant Poisson process. We have g(λ) = θ/(θ +λ) and moment computations show that
Y is gamma(θ).

Analogous examples with the independence property of indicators can be also constructed in
higher dimensions.

Example 20. (interval spaces) A random interval ]a, b[⊂ [0, 1] is defined by choosing its
endpoints 0 ≤ a < b ≤ 1 from the bivariate density α(α − 1)(b − a)α−2, where α > 1. For
α = 2 this is a bivariate uniform distribution. One natural partial order on the intervals is by
inclusion. Then

D′(s) = (α − 1)(s−1/α − 1) , g(λ) =
α − 1

(λ + 1)(αλ + α − 1)
. (16)

The limit variable is Y =d EZ with independent E exponential(1) and Z beta(1 − 1/α, 1).

Another partial order is the ‘interval order’ defined by ]a, b[≺ ]a′, b′[⇐⇒ b ≤ a′. With this order
and the above density the space of intervals is a box-space (12, p. 63). For this space we have

D′(s) =
[
s−1/α − 1

]α−1
, g(λ) =

Γ(1 + α)Γ(1 + αλ)

Γ(1 + αλ + λ)
.

Both constructions of interval spaces generalize to arbitrary box-spaces.

Example 21. (cones) Let H ⊂ R
d be a hyperplane at unit distance from the origin and let

A be a (d − 1)-dimensional convex body in this hyperplane. Define a self-similar space with X
being the convex hull of A∪{0}, with µ being the measure with density cρ(x)β (β > −1) where
ρ(x) is the distance from x to H, and with order x ≺ y ⇐⇒ x − y ∈ X for x, y ∈ X . It is easy
to compute h(x) = ρ(x)β+d and

D′(s) = c s(1−d)/(β+d)(1 − s1/(β+d))d−1,

where c = (β + 1) · · · (β + d − 1)/(d − 1)!.

The last formula specializes to (16) for β = α − 2, d = 2. This is no coincidence: an inspection
of the interval space shows that it fits in the present example.

Example 22. (simplexes) This example is suggested by a construction of simplex trees in
(14). Let X be a d-dimensional simplex with µ the uniform distribution on X . Fix a (d − 1)-
dimensional face of X and for x ∈ X let Lx be the interior of the convex hull of x ∪ F . Define
a partial order by y ≺ x ⇐⇒ y ∈ Lx. The law of W is D(s) = 1 − (1 − s)d. This distribution
is beta(1, d) (d = 1, 2, . . .), but the parameter stands here on the inappropriate side, hence the
record indicators are independent only for d = 1.

Bollobás and Brightwell (12) also defined a larger class of spaces which have all intervals isomor-
phic to one another. By analogy, we can introduce a larger class of spaces which have (almost)
all lower sections isomorphic to one another, but not necessarily isomorphic to the whole space.
Examples are easy to provide, one can take for instance any lower set in a self-similar space. For
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this larger class of spaces (2) still holds with independent factors, but only W2,W3, . . . must be
i.i.d. The CLT for the number of chain records readily extends to this more general situation.

Acknowledgment The author is indebted to Charles Goldie for the remark in Section 5, com-
ments on an earlier draft of the paper and his most stimulating interest.
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